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A non-stationary axisymmetric model of Czochralski silicon single crystal growth is presented. The
model describes transient behavior of crystal–melt, melt–gas and crystal–gas interfaces in connection
with PID-based control of crystal diameter by changing crystal pulling velocity and heater power.
To calculate significant crystal shape changes, unstructured finite element mesh is used in crystal and

a simplified integral model. A numerical simulation example of start cone growth is given.
& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, the Czochralski (CZ) process is widely used for the
production of large single crystals with desired properties. For
example, monocrystalline ingots of such semiconductors as silicon
or gallium arsenide are typically grown by the CZ method. The
mathematical model of CZ process is complex because the com-
plete crystal growth process, which starts with dipping the small-
sized seed crystal into the melt and slowly pulling the growing
crystal of desired shape upwards, is in its nature transient. More-
over, multiple physical phenomena have to be taken into account,
which is still a very challenging task [1].

One of the first realistic calculations of significantly changing
crystal diameter, i.e., “shouldering” (cone growth), during global
simulation of transient CZ process is presented in Refs. [2,3]. The
axisymmetric mathematical model describes the non-stationary
temperature field and radiation heat exchange as well as time-
dependent crystal–melt, melt–gas and crystal–gas interface
shapes. Direct and inverse problems are considered; in the former,
the system time evolution is calculated using the provided heater
power curve; in the latter, the required heater power curve
necessary to obtain the imposed crystal shape is calculated.
Nevertheless, a constant structural mesh topology is used in
ll rights reserved.
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calculations and process control is not considered for the solving
of the inverse problem.

The dynamic modeling of oxide crystal CZ growth with the PID-
type process control is considered in Refs. [4,5]. Because of the
high Prandtl number for oxide melts, the convective heat transfer
is taken into account in the melt. In these calculations the change
of crystal radius is considered and the weight-based control is
used to obtain a desired crystal shape. Nevertheless, structural
grids are used in the crystal and melt, making this approach
technically limited for precise calculation of crystal diameter
changes.

An example of a low-order modeling approach is given in Ref. [6],
where the shape of the crystallization interface is represented by a
several piecewise linear segments. The whole system is divided in
a number of lumps and for each lump heat flow balance is related
with the corresponding temperature change rates. This approach
describes system dynamics and is computationally inexpensive,
therefore it can be used to support an experiment in real-time.
Feedback from an experiment can be used to increase numerical
model precision. However, this model could not be considered as a
self-contained model with high enough precision.

Because of the importance of process control for CZ growth, it is
a topic of active research. State-of-the-art works [7–10] deal with,
among other things, the reconstruction of parameters that cannot
be directly measured by a nonlinear state observer and optimal
design of CZ control system. Of course, these references are by no
means complete—a good survey of the works considering model-
based approach for CZ control as well as control design is given in
Ref. [11, chap. 3], see also references therein. Since we are
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Fig. 1. A simplified CZ system (dimensions in millimeters).
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currently focusing on the development of the mathematical model
for transient CZ growth simulation, we feel that at this stage
process control details are not of great significance. Nevertheless,
the exact control design and its parameters are important and our
model could be readily used for precise tests of different control
approaches.

Possibility of 3D calculations of the three-phase boundary
movement in horizontal and vertical directions for CZ process is
shown in Refs. [12,13]. The influence of melt motion on heat
transfer in the melt is taken into account. Nevertheless, structural
grid is used and only small changes of crystal shape are consid-
ered. 3D calculations of crystal shape, including facets, are
reported in Ref. [14]. However, this model includes growth kinetics
and due to 3D description demands high computer resources,
therefore it is unsuitable for efficient calculations of transient
silicon crystal growth processes with control.

Examples of commercial codes for modeling CZ crystal growth
are CGSim package [1,4,5,15,16] and FEMAG-CZ simulation soft-
ware [17,18]. It is possible to calculate the non-stationary tem-
perature fields, crystallization interface and crystal diameter
changes, and to solve direct and inverse problems. However, even
if unstructured meshes can be used, as demonstrated in Ref. [18]
for a 100 mm CZ silicon growth, the underlying mathematical
model for dealing with moving unstructured meshes as well as an
example of a full process control for an industrial-scale (200 or
300 mm in diameter) silicon crystal growth are still not published.

To sum up, there is a necessity for an effective mathematical
model of transient CZ process that can accurately describe changes
of phase boundaries, especially in the vicinity of the triple point
(TP), and can distinguish very small crystal shape changes and
therefore could be used to consider CZ process with crystal
diameter control by changing crystal pulling velocity and
heater power.

In the present paper we propose a mathematical model which
is (i) axisymmetric and with simplified heater description, there-
fore computationally inexpensive yet realistic; (ii) fully transient
(non-stationary); (iii) with focus on the triple point region and
crystal shape formation, for which an unstructured mesh is used.
Our model is based on previously developed transient model for
floating zone crystal growth process [19,20] and is implemented in
program CZ-Trans. An example of crystal shape calculations for CZ
silicon single crystal start cone growth is given and the processes
in the vicinity of TP are analyzed.
2. Mathematical model and calculation algorithm

A simplified CZ system is schematically shown in Fig. 1.
It consists of crystal and melt domains in which non-stationary
axisymmetric temperature field is calculated. Melt temperature is
kept above the melting point using a graphite heater. Due to the
relatively good graphite heat conductivity, for the heater a simpli-
fied description is used with an uniform but time-dependent
effective temperature. Optionally, the influence of an additional
radiating surface (e.g., heat shield) can be taken into account.

The proposed mathematical model describes heat transfer in
crystal and melt by heat conduction. Optionally, the heat conduc-
tion in the crucible wall can be taken into account. The influence of
convective heat transfer by melt flow is neglected in the present
model (or modeled with enhanced heat conductivity). The thermal
radiation is described by view factors. It is assumed that the
horizontal part of the melt free surface does not change its vertical
position due to ideally controlled crucible movement. The menis-
cus shape at the TP is modeled in hydrostatic approximation. The
shape of the crystallization interface and the changes of crystal
length and crystal radius are also modeled. For faster calculations,
the assumption of constant melt volume is used while considering
systems with large melt volumes and time intervals in which there
are relatively small crystal volume increases.

The general calculation algorithm as implemented in program
CZ-Trans is the following:
1.
 In the beginning of a new time step, crystal pulling velocity and
heater power are adjusted accordingly to the desired crystal
side surface shape and to desired pulling velocity. For this
the conventional PID-based control is used, see Section 2.1.
A simplified heater model, which connects the changes of
heater power and temperature is given in Section 2.2.
2.
 The previously calculated crystal growth velocities along the
crystallization interface, the previous crystallization interface
and previous meniscus shape at TP are used to calculate the
new shape of crystallization interface and the new position of
TP. Then the whole crystal (i.e., previous FEM mesh) is moved
upwards accordingly to current crystal pulling velocity and
time step, see Section 2.3.
3.
 Using the new TP position above the melt level, free surface
shape (meniscus) is calculated, see Section 2.4.
4.
 New mesh which is appropriate to the new geometry is
generated in crystal and melt; temperature field is interpolated
from old mesh to the new one.
5.
 Coupled temperature-radiation problem is solved iteratively for
the next time instant, see Section 2.5.
6.
 From obtained temperature fields, the heat flux density dis-
tributions along crystallization interface and corresponding
crystal growth velocities are calculated.

Detailed explanation of the most important calculation steps is
given below.

2.1. Process PID control

In order to grow a crystal of the desired side surface shape with
desired pulling velocity, two PID controllers are used as follows
[11, sect. 3.5]:
1.
 a crystal diameter PID controller (denoted by index “D”), in
which the difference between actual and desired crystal
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diameter value is used as signal for the enhancement of pulling
velocity, Vp, relative to the reference value;
2.
 a heater power PID controller (denoted by index “H”), in which
the difference between actual and desired pulling velocity is
used as signal for the enhancement of heater power, PH,
relative to the given reference value.

Crystal pulling velocity changes control crystal diameter much
faster than heater temperature due to thermal inertia of system
components.

The standard form of the PID controller is used, in which the
change Δu of the manipulated variable u is given by

ΔuðtÞ ¼ Kp eðtÞ þ Td
de
dt

ðtÞ þ 1
Ti

Z t

0
eðτÞ dτ

� �
; ð1Þ

where eðtÞ ¼ f 0ðtÞ−f ðtÞ is the difference between setpoint (target
value) f0 and actual value of process variable f, Kp is the gain,
Ti and Td are the integral time and the derivative time, correspond-
ingly. The manipulated variable is adjusted accordingly to uðtÞ ¼
uref ðtÞ þ ΔuðtÞ, with an externally provided reference curve uref .
Fig. 2. Schematics of free surface and crystal shape calculation.
2.2. Simplified heater model

Instead of solving the temperature field in the heater, a
simplified integral model is used for the calculation of the heater
temperature, TH.

Let Prad be net heater radiation power toward the crucible and
Ploss—power of all the other heat losses in heater, see Fig. 1. Prad is
calculated during coupled temperature-radiation problem (Section
2.5). For a chosen basic state for the heater (indicated by index “0”)
we assume that heater temperature is constant, therefore

PH;0−Prad;0−Ploss;0 ¼ 0: ð2Þ

Changes of heater temperature in a non-stationary case are
described by the equation

PH−Prad−Ploss ¼ Cp;H
dTH

dt
; ð3Þ

where Cp;H is heat capacity of the heater.
Assuming that heat losses linearly depend on heater tempera-

ture, the following equations hold:

Ploss ¼ αlossðTH−TAÞ; ð4Þ

Ploss−Ploss;0 ¼ αlossðTH−TH;0Þ; ð5Þ

where TA is the ambient temperature. The coefficient of propor-
tionality, αloss, depends on the thermal insulation used in the
concrete CZ puller.

Combining Eqs. (2), (3) and (5), one obtains

Cp;H
dTH

dt
¼ΔPH−ðPrad−Prad;0Þ−αlossðTH−TH;0Þ; ð6Þ

where ΔPH ¼ PH−PH;0 is the required heater power change com-
puted by PID process control.

The value of αloss can be estimated from heater thermal
insulation analysis; in practice, Ploss should be small compared to
PH. Using Eqs. (2) and (4) for basic state, one can choose a
reasonable value of the ratio β0 ¼ Ploss;0=PH;0 and obtain an
approximation for αloss:

αloss ¼
β0

1−β0

Prad;0

TH;0−TA
: ð7Þ
2.3. Crystallization interface and crystal shape

For the calculation of the time-dependent crystallization inter-
face and crystal shape we use basically the same approach as in
Refs. [19,20]. Each time step, Δt, the crystallization interface is
moved in normal direction (normal vector n! is shown in Fig. 1) by
the distance vnΔt. Front normal velocity in the laboratory refer-
ence frame, vn, is calculated from local heat balance condition after
temperature-radiation problem has been solved and heat flux
densities at the crystallization interface in crystal and melt
(qc and qm; q¼ λ∂T=∂n) have been obtained:

vn ¼
qc−qm
ρcQ

−V
!

p � n!; ð8Þ

where Q is the latent heat of fusion, ρc—crystal density, Vp—

crystal pulling velocity.
Crystal radius change depends on meniscus angle and crystal

growth rate at the TP. After the new shape of the crystallization
interface has been obtained, it is shifted downwards by VpΔt. The
new position of the TP is calculated as the intersection of the
crystallization interface tangent and the line which forms an angle
of ϕTP−ϕ0 with vertical direction at the TP (see Fig. 2), where ϕ0 is
the so-called growth angle. Crystal grows with a constant dia-
meter if the angle ϕTP between tangent to the free surface at the TP
and vertical is equal to ϕ0.

In the end, the whole crystal (including crystallization inter-
face) is shifted upwards by the distance VpΔt.
2.4. Free surface shape

In hydrostatic approximation, the free melt surface shape in the
CZ process is determined by hydrostatic pressure and surface
tension. In general, both principal curvatures of the free surface
have to be taken into account, especially for the seeding stage,
when crystal radius is small.

The numerically computed solutions of the Young–Laplace
equation (in parametric form, see, e.g., [11, chap. 8]) considering
both curvature radii are used in our calculation program. In Fig. 3,
the influence of the second curvature radius is illustrated for
silicon growth for different values of r0, the radial coordinate of the
uppermost meniscus point. These shapes are shifted along the
horizontal axis and compared to the planar analytic solution,
which corresponds to very large (infinite) crystal radius. Since
signs of the meridional curvature radius, R1, and second curvature
radius, R2, are opposite and tension forces due to second curvature
act in the direction of the symmetry axis, R1 is smaller for cases
with larger second curvature, R−1

2 , i.e., for smaller r0. As a
consequence, the maximal meniscus height is also smaller in
this case.

It can be seen that, for r0450 mm, free surface shape does not
depend significantly on r0, therefore, to improve calculation speed
for larger crystals, optionally, the second curvature radius can be
neglected in our calculation program. Under this assumption, free
surface shape y(x) in the local coordinate system ðx; yÞ, see Fig. 2, is



Fig. 3. The influence of second curvature radius on the free surface shape. For
comparison purposes, profiles are shifted in horizontal direction (coordinate x is
not radius). Silicon physical properties (see Table 1) are considered.

Fig. 4. Precise solution and approximation of the free surface shape neglecting
second curvature radius.

Table 1
Material properties of silicon and graphite used in the present work as well as
quasi-stationary (QS) growth parameters for the modeled system [22,16,27].

Property Denotation and value

Melting point T0¼1685 K
Density, melt ρm ¼ 2580 kg=m3

Density, crystal ρc ¼ 2329 kg=m3

Specific heat capacity, melt cp;m ¼ 960 J=ðkg KÞ
Specific heat capacity, crystal cp;c ¼ 1032 J=ðkg KÞ
Thermal conductivity, crystal λcðT0Þ ¼ 22 W=ðm KÞ
Latent heat of fusion Q¼1.8�106 J/kg
Surface tension γ ¼ 0:7835 N=m
Growth angle ϕ0 ¼ 111
Emissivity, melt εm ¼ 0:30
Emissivity, crystal εcðT0Þ ¼ 0:46
Emissivity, graphite εgr ¼ 0:80

Ambient temperature TA ¼ 380 K
Effective thermal conductivity, melt λm;eff ¼ 140 W=ðm KÞ
QS temperature TH;0 ¼ 2167:7 K
QS radiation power Prad;0 ¼ 204:08 kW
Heat loss coefficient αloss ¼ 55:58 W=K
Heater heat capacity Cp;H ¼ 456:2 kJ=K
Target pulling velocity Vp;0 ¼ 1:0 mm=min
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described by the Young–Laplace equation

γ
1
R1

¼ γ
y″

ð1þ y′2Þ3=2
¼ ρgy; ð9Þ

which has analytical solution (see, e.g., Ref. [21])

x¼ lc arccosh
2lc
y

−lc

ffiffiffiffiffiffiffiffiffiffiffiffi
4−

y2

l2c

s
þ x0; ð10Þ

where γ is the surface tension, ρ – fluid density, g¼9.81 m/s2 –

gravity, lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ðρgÞ

p
– capillary constant. From Eq. (10) follows the

relation between meniscus height, h, and free surface angle ϕTP

with vertical at TP: h¼ lc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−sin ϕTPÞ

p
. x0 is found from the

condition that y¼h at x¼0.
The expression (10) is applied for large values of y: free surface

is constructed using the curve x(y). For small y, the curve y(x) is
used instead. It is straightforward to show that the following
approximation holds in this case:

y≈4lc exp 2−
x−x0
lc

� �
: ð11Þ

Both the precise solution (10) and approximate solution for
small y (11) are plotted in Fig. 4. The latter can be safely used for
yo0:2lc .

2.5. Temperature in crystal and melt and radiation

Non-stationary axisymmetric temperature fields, Tðr; z; tÞ, in
crystal and melt domains are obtained by solving the correspond-
ing temperature equation in each of these domains separately:

ρcp
∂T
∂t

¼ 1
r
∂
∂r

rλ
∂T
∂r

� �
þ ∂

∂z
λ
∂T
∂z

� �
; ð12Þ

where ρ is density, cp – specific heat capacity, λ¼ λðTÞ – thermal
conductivity. The corresponding material properties of crystal and
melt from Table 1 are used.

For the temperature field the following boundary conditions
are applied: temperature is set to melting point at the crystal-
lization interface; ∂T=∂r¼ 0 at the symmetry axis (r¼0);
λðTÞ∂T=∂n¼ −qrad at all radiating surfaces (normal is outer-point-
ing). qrad is net radiation heat flux density, obtained from thermal
radiation calculations.

Radiation calculation is done in the same way as in Ref. [22],
i.e., following Ref. [23]: only diffuse radiation is considered,
surfaces are assumed to be opaque and optically gray. Since we
do not consider the whole CZ system, including water-cooled
vessel wall, the concept of “space node” [22] is still used to include
the effect of surroundings.

For each time step thermal radiation and temperature calcula-
tions are done iteratively until temperature changes reach the
specified convergence criterion.
3. Calculation example of start cone growth

To analyze highly transient processes in CZ system and their
impact on the TP region, the growth of the crystal start cone with
PID control is calculated with program CZ-Trans. An example of
linear transition of crystal radius from 20 mm to 100 mm over
crystal length of ca. 107 mm is considered (R0 in Fig. 5b). As the
target pulling velocity 1.0 mm/min is considered for the whole
cone growth and for the cylindrical growth afterwards.

Material properties of silicon are readily available in the
literature, see, e.g., Refs. [24–26]. The experimentally obtained
values can slightly differ because of the differences in experimen-
tal methods and system conditions. To be consistent with our
previous calculations, we mainly use the same set of physical
parameters, following the latest measurements but not adopting
them immediately. In the present paper a combination of para-
meters from Refs. [16,22] is used, as well as value of surface
tension reported in Ref. [27]. A summary of all calculation para-
meters is given in Table 1. Emissivity of graphite is considered for
heater and crucible surfaces; for solid silicon the following
temperature dependencies of emissivity and thermal conductivity
are used [22]:

εcðTÞ
εcðT0Þ

¼
1:39; To0:593T0

1:96−0:96T=T0; T≥0:593T0
;

(

λcðTÞ
λcðT0Þ

¼ 4:495−7:222
T
T0

þ 3:728
T
T0

� �2

:



Fig. 5. Calculation results for KD
p ¼ −0:10 min−1 (left) and −0:35 min−1 (right). Time dependencies of (a) crystal radius, R, and meniscus angle at TP, ϕTP; (b) the same

quantities as functions of crystal length; (c) pulling velocity, Vp, and heater temperature, TH; (d) heater temperature, TH, and heater power change, ΔPH; (e) angle α between
crystallization interface and crystal side surface at TP, crystallization interface depth, d, and TP height h above melt level.
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For a crystal diameter PID controller two different values of
parameter Kp

D were used: −0:10 min−1 and −0:35 min−1 (it was
increased to reduce crystal radius overshoot); integral and deri-
vative terms were switched off. For a heater power PID controller
Kp

H was −10 kW min=mm and Ti
H was 1000 s; derivative termwas
switched off. These values mainly are the result of several
numerical test calculations but orders of magnitude are also based
on our practical experience of industrial CZ Si growth. We would
also like to note that the derivative term of crystal diameter
controller was switched off to reduce pulling velocity fluctuations.
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Test calculations with various finite element numbers and time
steps have been carried out during the development and testing of
the program CZ-Trans. The corresponding results allow us to
consider the presented calculation example of start cone growth
as sufficiently precise.

First, using CZ-Trans, the quasi-stationary state is obtained for a
relatively small cylindrical crystal with radius 20 mm and length
50 mm. This state is used as basic state for the further calculations.
The heater temperature value, TH;0, and net radiation power, Prad;0,
are found which ensure the TP height which corresponds to
cylindrical growth with the considered crystal radius and
Vp ¼ 1:0 mm=min at the given ambient temperature value TA.
By requiring that heat losses in basic state, Ploss;0, are ca. 32% of
PH;0 and using Eq. (7), value of αloss ¼ 55:58 W=K is obtained. Cp;H is
estimated by using specific heat capacity of graphite of 1800
J/(kg K) and mass of graphite parts of ca. 250 kg.

Then the fully transient calculation with CZ-Trans is started at
time instant t¼0 h. Crystal pulling velocity and heater power are
adjusted by PID control to obtain increasing radius according to
predefined target radius function over the crystal length. Cylind-
rical growth is continued when target radius of 100 mm is
reached.

Calculated time dependencies of crystal radius, R, and meniscus
angle at TP, ϕTP, as well as target crystal radius, R0, for the
considered cone growth are shown in Fig. 5a. The same depen-
dencies as functions of crystal length are given in Fig. 5b. Corre-
sponding time dependencies for the pulling velocity, Vp, heater
power change, ΔPH, and heater temperature, TH, are shown
Fig. 5c,d. Fig. 5e shows the time dependencies for angle α between
crystallization interface and crystal side surface at TP, crystal-
lization interface depth (deflection), d, and TP height h above melt
level (see also Fig. 2).

Fig. 6 demonstrates the unstructured finite element mesh and
temperature field in crystal and melt for three subsequent time
instants of the calculation: starting geometry; intermediate state
during cone growth; transition from cone to cylinder (i.e., shoul-
dering). Cylindrical growth with radius of 100 mm is illustrated in
Fig. 7. It can be seen that the used automatic meshing generates
the finite elements progressively larger in regions which are
further from the crystallization interface to save the necessary
computing resources. Nevertheless, the calculated shape of the
crystal side surface is stored as a line with the resolution obtained
during the calculation of the new TP position after each time step,
see Fig. 7. The nodes of the elements for temperature and radiation
calculation are slided along this line during mesh generation. Fig. 8
shows the calculated shape of the interfaces and used finite
element mesh in the vicinity of TP during shouldering and
cylindrical growth.
Fig. 6. Finite element mesh and temperature distribution within the melt and
crystal during cone growth for KD

p ¼ −0:10 min−1. Shown is also the crystallization
interface shape (dashed line).
4. Analysis of the transient behavior of the CZ system during
crystal cone growth

For the analysis of the transient behavior of the PID controlled
CZ system during crystal cone growth, the calculated time depen-
dencies in Fig. 5 are used. First, the results for crystal diameter
controller gain KD

p ¼ −0:10 min−1 are discussed; then the effect of
increasing Kp

D to −0:35 min−1 is explained.

4.1. Crystal diameter controller gain KD
p ¼−0:10 min−1

The modeling of the cone growth process is started with
cylindrical growth of relatively small crystal with radius 20 mm
and ϕTP ¼ ϕ0. Because the target radius function demands at t¼0 h
a linear increase of radius over the length of the crystal and initial
heater temperature is too high to ensure the required ϕTP, the PID
control significantly reduces the pulling velocity from target value
of 1.0 mm/min to ca. 0.1 mm/min in less than 30 min. Correspond-
ingly, h reduces from 7 mm to 2 mm, which causes the increase of
ϕTP from 111 to about 651. Due to reduced pulling velocity, the PID
control reduces the heater power. However, the thermal inertia of
heater demands about 1 h to reduce the heater temperature



t = 04:0040mm

Precise crystal shape

Fig. 7. Finite element mesh and temperature distribution within the melt and
crystal during cylindrical growth for KD

p ¼ −0:10 min−1. Shown is also the crystal-
lization interface shape (dashed line).

5mm t = 02:54

5mm t = 04:00

Fig. 8. Shape of phase boundaries and finite element mesh in the TP region for
KD
p ¼ −0:10 min−1.
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sufficiently to obtain pulling velocity of ca. 0.8 mm/min, which is
slightly smaller than target value.

After approximately 1 h process time, crystal pulling velocity
and heater power overshoots are observed, which are caused by a
sophisticated interplay between the CZ system and the corre-
sponding process controls. Due to high initial heater temperature,
it is gradually decreased, cooling the melt and increasing crystal
growth velocity, but, apparently, the initial (for t ¼ 0…0:5 h) rate
of cooling is considerably higher than the rate required during
cone growth when Vp is approximately constant (for
t ¼ 1:5…2:5 h). Once TH has been decreased sufficiently, the over-
shoot of pulling velocity prevents too rapid increase of crystal
radius and causes the change of heater power to compensate the
change of Vp.

After the mentioned transition time of about 1 h, i.e., starting
from t¼1.5 h, the cone is grown with the almost target pulling
velocity for the whole cone. The meniscus angle is about 471.
However, at larger crystal radius values, the TP comes closer to hot
melt region near crucible wall, therefore the heater power must be
gradually reduced to gradually reduce its temperature. It can be
seen that the PID control ensures this reduction well.

After 2.5 h process time, the transition from cone to cylindrical
growth is started. This demands the decrease of meniscus angle to
ϕTP ¼ ϕ0, i.e., increase of TP height; therefore the PID control
enhances the pulling velocity. Since the desired crystal shape is
not smooth, pulling velocity has to be increased considerably, and,
because only proportional part is used for the control, crystal
radius overshoot occurs. Simultaneously, the crystal shape bulge
ensures higher radiation heat losses which increases the growth
velocity, therefore the TP height needs some overshoot of pulling
velocity (for about 30 min) to compensate this. The increase of
pulling velocity causes the sharp increase of heater power and
with some time delay the increase of heater temperature, which is
smooth due to thermal inertia of heater. During transition to
cylindrical growth oscillations of ϕTP occur; ϕTP even becomes
negative (see also Figs. 6 and 8 at t¼2 h 45 min), however, process
control successfully handles the situation and makes them to
vanish.

Fig. 5e shows that the angle α during cone growth is about 551
and, because the slope of the cone is about 531, the crystallization
interface at TP forms an angle of 921 with vertical. During
cylindrical growth the crystallization interface angle is about 731.
It can be seen that the crystallization interface at the beginning of
the cone is even convex (see Fig. 6, t¼48 min); in the cone region
after 1 h it becomes concave but is relatively flat (deflection
smaller than 5 mm); after the transition to the cylindrical growth
the crystallization interface becomes concave and the deflection
increases about three times, i.e., to ca. 15 mm.

4.2. Crystal diameter controller gain KD
p ¼−0:35 min−1

The qualitative tendencies for case with KD
p ¼ −0:35 min−1 are

practically the same as for KD
p ¼ −0:10 min−1: first, crystal pulling

velocity and heater power are decreased to ensure the increase of
crystal diameter; when the transition to cylindrical growth begins,
crystal pulling velocity is considerably increased for a short time
interval, which leads to the increase of heater power and its
temperature. Similarly as before, during almost the whole first
hour of simulation, crystallization interface is convex but it
changes to concave at later times.

Due to the increased Kp
D, pulling velocity is adjusted more

rapidly; it is, in fact, dropped to zero in the first 30 min, indicating
that the heater temperature has to be dropped first, and only after
that the crystal pulling can be started. Increased Kp

D also produces
a more rapid oscillations of Vp, which may be undesirable.

The most visible difference compared to previously considered
Kp

D is that now crystal radius more closely follows the desired
shape, and the overshoot due to transition to cylindrical growth is
a few times smaller. Of course, in a real world more careful
considerations should be taken into account for the design and
parameters of the process control.
5. Conclusions

The proposed mathematical model of transient CZ process,
calculation algorithm and implementation in calculation program
CZ-Trans can accurately describe the vicinity of the triple point
and can distinguish very small crystal shape changes and therefore
can be effectively used for the modeling of CZ process with optical
crystal diameter control by changing crystal pulling velocity and
heater power. For a considered calculation example, crystal–melt
interface is convex at initial stage of the cone growth and then
changes to concave. Overshoot of crystal radius at the transition to
cylindrical growth was observed due to imposed non-smooth
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desired crystal shape, and was reduced by adjusting control
parameters. The optimal design and tuning of CZ control is a
difficult topic which is beyond the scope of this paper. However,
CZ-Trans can be used for testing of the effectiveness of different CZ
control designs.
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