

Computational assessment of candidate SNP markers of proteasomal genes for multiple sclerosis association studies in Latvian population

I. TRAPINA¹, G.MELKUS, N. PARAMONOVA¹, N.SJAKSTE²

¹Institute of Biology, University of Latvia; ² Faculty of Medicine, University of Latvia

Background

Proteamol system: Proteasomes, the multycatalytic protease complexes, play a critical role in the degradation of proteins via ATP/ubiquitin-dependent process or ubiquitin proteasome system, which plays a crucial role in immunity and its disregulation and/or modulation may influence the development and progression of different diseases.

Multiple sclerosis is an autoimmune inflammatory disease of the central nervous system (brain, spinal cord and optic nerves). Inflammation damages myelin, which surrounds and insulates the nerve fibres, the nerve fibres themselves, and the specialized cells that make myelin, thus leading to neurodegeneration and disabilities.

The proteolytic activities of proteasomes are reduced in brain tissue of Multiple sclerosis patients. The 20S proteasome had been identified as a target of the humoral autoreactive immune response and a major autoantigen in MS patients.

> Utilize several computational methods for the effective assessment of several proteasomal gene SNPs as candidate markers for future genotyping in the Latvian population to discover medically relevant associations with multiple sclerosis

> > \checkmark

Aim

Six SNPs of proteasomal genes:

- 1. PSMB8 (LMP7) proteasome subunit beta 8: I. $rs2071543 > NM_004159.4:c.135+427C>A (Gln49Lys)$
- II. rs9357155 > NM_148919.3:c.537+63C>T (G>A) III.rs9275596 > NT_167246.1:g.4138777T>C
- 2. PSMB9 (LMP2) proteasome subunit beta 9 I. $rs17587 > NM_002800.4:c.179G > A$
- 3. PSMD9 proteasome 26S subunit, non-ATPase 9
- I. $rs74421874 > NM_002813.6:c.454-460G > A$
- II. rs3825172 > NM_002813.6:c.454-437C>T

PSMB8 (LMP7)

rs2071543 - MAF in EUR: 0.15

Transcription factor binding site

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Matrix similarit

RNA secondary structure A \mathbf{C}

Meta analyze of scientific literature

- **Bioinformatical tools:**
- Transcription factor binding site > MatInspector
 - (http://www.genomatix.de) with identity 1,00 of core and >0,85 of matrix
- DNA bendabilty > bent.it (Vlahovicek et al., 2003;
 - http://pongor.itk.ppke.hu/dna/bend_it.html#/bendit_form)
- DNA and/or RNA secondary structure > Mfold (Zuker 2003,

http://unafold.rna.albany.edu/?q=mfold/DNA-Folding-Form)

Results

Materials

and methods

PSMB9 (LMP2)

rs17587 - MAF in EUR: 0.27

Transcription factor binding site

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 Matrix similarity

DNA secondary structure

PSMB1, PSMB5, PSMB

DNA bendabilty in areal **decreases** at change of nucleotide C>A

rs9357155 - MAF in EUR: 0.31

DNA bendabilty in areal **increases** at change of nucleotide G>A

Transcription factor binding site

SRY.01 (-)		
	CABL.01 (-)	

DNA secondary structure

DNA bendabilty in areal **not change** at change of nucleotide G>A

PSMD9

rs74421874

rs3825172

in complete linkage disequilibrium with MAF in EUR: 0.31 for both SNPs

Transcription factor binding site

DNA secondary structure

DNA bendabilty in areal **inreases** at change of nucleotide T>C

DNA bendabilty in areal **inreases** at change of nucleotide G>A and C>T, or GC > AT

Conclusion

- ✓ Literature about chosen SNPs of PSMB8, PSMB9, and PSMD9 illustrate their potential as markers for multiple sclerosis.
- ✓ Computational analyses highlight that chosen SNPs may be functionally relevant in their corresponding genes through modulating the binding of transcription factors via structural and sequence changes.

ERAF SAM Nr. 1.1.1.1/16/A/016 project "Determination of proteasome-related genetic, epigenetic and clinical markers for NATIONAL Acknowledgements multiple sclerosis"; UL research project "The study of biomarkers and natural compounds for the diagnosis and personalized treatment of acute and chronic disease" Ilva Trapina e-mail: ilva.trapina@lu.lv

INVESTING IN YOUR FUTURE

MAF – minor allele frequency; EUR – European population;