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Mathematical background of the Riga dynamo experiment
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(Received 14 October 2011; in final form 29 February 2012)

The Riga dynamo experiment is a laboratory model of the natural process that is responsible
for all environmental magnetic-fields which are generated without human interference. This
applies to the field of the Earth, the Sun, stars, and even galaxies which are produced by intense
motions of large volumes of good electro-conducting fluids. For our experiment, we use molten
sodium – the best liquid electro-conductor available in the laboratory. Approximately 2m3 of
molten sodium are filled into a prolonged cylinder, at the top of which rotates a propeller
powered by 200 kW from two motors. The cylinder is divided by thin coaxial inner walls into
three parts: in the inner tube the propeller moves the sodium flow helically downward; in the
middle one the sodium flows vertically upward; and the outer part contains liquid sodium at
rest. When the propeller speed exceeds a critical value (depending on temperature: around
1800 rpm, corresponding to a sodium flow of 0.6m3 s�1) then a magnetic-field is spontaneously
excited. The field pattern slowly rotates around the vertical axis. To enable self-excitation, the
sodium flow had been carefully optimized. This article gives an historical overview about the
steps in the mathematical description of the Riga dynamo and the optimization of the sodium
flow structure. Our analytical model builds on the Ponomarenko configuration, which we
modify in four analytical steps. Firstly, the Ponomarenko model was adopted for finite Rm.
Then, instead of real generation, we find convective amplification. Secondly, when the outer
conductor was replaced with a return tube an absolute instability was attained but at high Rm.
Thirdly, to lower Rm a third, immobile conductor was inserted outside and all sizes optimized
to achieve global generation at minimum Rm. Adopting these sizes, an experiment was designed
and made. Fourthly and finally, the velocity profile was replaced by a trial polynomial to
identify the direction in which the flow structure should be corrected.

Keywords: MHD Dynamo; Laboratory experiments

1. Short history of the experiment

A Riga-type experiment was proposed by Prof. Max Steenbeck in 1966 when he visited

the Institute of Physics in Salaspils. After having completed the mean-field theory of

magnetic-field formation in celestial bodies (Steenbeck et al. 1966), Steenbeck was

excited by the idea to reproduce the process in the laboratory. In the first instance, his

intention was to build a small scale demonstration experiment of the �-effect – a corner-
stone in his theory. Indeed, such an experiment has been successfully conducted

*Email: gailitis@sal.lv

Geophysical and Astrophysical Fluid Dynamics

ISSN 0309-1929 print/ISSN 1029-0419 online � 2012 Taylor & Francis

http://dx.doi.org/10.1080/03091929.2012.680698

D
ow

nl
oa

de
d 

by
 [

A
gr

is
 G

ai
lit

is
] 

at
 0

3:
43

 2
3 

M
ay

 2
01

2 



(Steenbeck et al. 1967, 1968). However, the set-up of a full-scale magnetic-field

generation experiment was not so fast and easy. No one had a clear idea of which

dynamo schema could serve as the basis of such an experiment. Different models were

examined by the author in the following years. The first was a large scale ensemble of

many parallel helical flows (figure 1(a)) which reproduces the �-effect (Gailitis 1967).

The self-excitation condition in a spherical volume was calculated, but the set-up of a

corresponding experiment seemed too expensive for our institute. Years later, and quite

independent of our early ideas, a very similar concept was known as the Roberts-Busse

dynamo (Roberts 1972, Busse 1975) and a similar experiment was built in Karlsruhe

(Müller and Stieglitz 2000, Stieglitz and Müller 2001, 2002). The next considered model

contained a number of symmetrically located submerged skew-jets (figure 1(b), Gailitis

1969). Some simplified estimates lead to experimentally feasible values of the critical

Figure 1. Various theoretical dynamo models: (a) �2-dynamo setup, (b) Submerged skew-jets, (c) Toroidal
vortices and (d) Ponomarenko setup.
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magnetic Reynolds number Rm. Unfortunately, the more accurate the skin-effect was

considered, the higher the critical Rm turned out to be. The third model consisted of a

pair of toroidal vortices, as shown on figure 1(c) (Gailitis 1970, 1993, 1995). It was

mathematically surprising, since the field is produced by a purely meridional flow

without any helicity. However, the calculated critical Rm proved to be much too large

for any realistic experiment. So, we had to abandon that model, too. In total, the search

for an appropriate model took 8 years.
In the spring of 1975, on the initiative of Max Steenbek a closed workshop for

discussing unintended magnetic-field generation in fast breeder reactors was held at the

Obninsk nuclear research center in Russia, where Prof. Subotin drew our attention to a

recent article by Ponomarenko (1973). Finally, the concept of the experiment was found

on the basis of this article. Shortly, the Ponomarenko concept was further specified

(Gailitis and Freibergs 1976, 1980a,b), although its experimental realization took much

longer. The first experimental model was set-up in 1986. In 1987, it was tested at the

Leningrad Institute for Electrophysical Apparatus where a powerful pump for liquid

sodium was available. During this experiment, a significant deformation of the external

magnetic-field was observed (Gailitis et al. 1987, 1989, Gailitis 1989). Unfortunately,

some welding failed due to mechanical vibrations and the experiment had to be stopped

before the sodium speed necessary for self-excitation was attained. Rather than

repairing this device, in 1994 we started to build a new one at the institute in Salaspils

(Gailitis 1996, Stefani et al. 1999) shown as a photograph in figure 2 and schematically

in figure 3. Since sufficiently strong external pumps were not available, we choose to

move the sodium by an internal propeller. To prevent a similar failure as in Leningrad,

two full-size water mock-ups were built for various tests of the mechanical integrity and

the flow structure. Even the final sodium model was at first tested with water. In 1999, it

was filled with sodium, already at the first launch we observed the expected magnetic-

field self-excitation (Gailitis et al. 2000). For further development, see Gailitis et al.

(2001a,b,c, 2002, 2004).

2. Ponomarenko approach

Ponomarenko (1973) considered a solid electrical conductor of infinite axial and radial

extension with a cylindrical hole shown in figure 1(d). Through this hole, a solid

cylinder of the same conductivity is thought to move helically with the axial velocity vz
and angular velocity O. The cylinder is in ideal electrical contact with the rigid

environment. To find mathematical evidence of magnetic-field generation,

Ponomarenko solved the induction equation

@

@t
þ v . ;

� �
B ¼ ðB . ;Þvþ

1

Rm
4B ð1Þ

both in the rigid conductor and in the mobile cylinder. Because of the symmetry of the
problem the magnetic-field eigen-function exponentially depends on the time t, the

azimuthal angle ’, and z according to

ðBr,B’,BzÞ � expðim’þ ikzþ ptÞ:
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To separate the equations, Ponomarenko considered the complex combination Br� iB’.
Then, the induction equations reduces to Bessel-type equations with complex

coefficients having solutions in the form of modified Bessel functions Im and Km of

complex arguments. In the external domain the equations are

1

r

d

dr
r
d

dr

� �
�
ðm� 1Þ2

r2
� s2

� �
ðBr � iB’Þ ¼ 0

with

s2 ¼ k2 þ �0�p:

Figure 2. (Colour online). Photograph of the Riga dynamo experiment.
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The equations in the moving cylinder differ from those in the immobile conductor
only by a Doppler frequency shift pef¼ pþ i(kvzþmO): instead of s2, we have

q2 ¼ k2 þ �0� ½ pþ iðkvz þmOÞ
�
:

In the external region, the appropriate solutions, which decay to zero as r!1, are

Br � iB’ ¼ b�Km�1ðsrÞ,

while in the mobile cylinder the solutions regular as r! 0 are

Br � iB’ ¼ a�Im�1ðqrÞ:

The field continuity condition at the sliding interface (r¼R) leads to the characteristic
equation

O�0�R
2ðR�1þ � R�1� Þ ¼ 2i ð2Þ

with

R� ¼
qRImðqRÞ

Im�1ðqRÞ
þ
sRKmðsRÞ

Km�1ðsRÞ
:

This is a transcendental equation of the form

Fð p, k,m,Rm, vz=ORÞ ¼ 0: ð3Þ

It is complex and contains an integer argument m, two real arguments Rm ¼
�0�R½v

2
z þ ðORÞ

2
�
1=2, vz/OR and the two, in general, complex arguments p¼ � þ i! and

Figure 3. (Colour online). Internal structure of the experiment.
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k¼ krþ iki. One can numerically find either one of the complex arguments or any of the

two real arguments, say (kr,!) in dependence on the other ones.
Actually, Ponomarenko did not solve this equation in a strict sense; he only proved

that at large enough Rm there is a solution which is exponentially growing in time (�
positive). For this purpose, Ponomarenko approximated the modified Bessel functions I

and K with the three first terms of their asymptotic expansions, which is justified for

large arguments sR, qR. Then, the two first terms cancel and the characteristic equation

takes the simple form

sqðsþ qÞR ¼ im�0�O: ð4Þ

The numerically made solution map for this asymptotic characteristic equation is
shown in figure 4 for the special ratio vz/OR¼ 1.3 (which turns out to be the optimum

value when the exact equation (2) is used). There and below, all lengths measured in

units of R and all times in units of �0�R
2. We consider only the case m¼ 1 as it

starts first.
Equation (4) can be converted into an algebraic equation of fourth degree which may

be solved even analytically. Ponomarenko followed a simpler route; he just looked at

the line kvz¼�mO, where s¼ q. The cubic root of both sides of (4) leads to the very

simple solution

k2 þ �0�ð� þ i!Þ ¼ ð�1Þ1=3ðm�0�O=2RÞ
2=3:

At m�0�O4 25/2k3R the real part on the right hand side exceeds k2, hence �4 0 and
the solution is growing in time. In addition, Ponomarenko proved that with growing

value of Rm the maximum of field amplification asymptotically tends to this very line.

Figure 4 confirms this behavior. However, it should be noted that resulting condition

Rm4 25/2m2(OR/vz)
3[1þ (vz/OR)

2]1/2 is very underestimated. The approximation of

Bessel functions by their asymptotic requires much larger Rm.
In summary, Ponomarenko’s approach gave a proof in principle of magnetic-field self-

excitation, for which the actual numerical value of the threshold was not needed. To find

the actual threshold value, we solved the original equation (2) numerically, using

Figure 4. Asymptotic equation (4) numerically solved for (kr,!) at m¼ 1, ki¼ 0, vz¼ 1.3OR and
selected �. We present only kr versus Rm. Ponomarenko prove growing field on dashed line kvz¼�mO,
Rm4 4.22m2.
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accurate expressions for Bessel functions (Gailitis and Freibergs 1976). The computed
growth curves, including the neutral curve, are shown in figure 5. The fastest
growth rate still approaches the line kvz¼�mO, but all � values fall much below the
ones given in figure 4. The real generation threshold attains a minimum of Rm¼ 17.7 at
vz/OR¼ 1.3.

3. Problems with the Ponomarenko setup for an experiment

The rather low-value Rm¼ 17.7 seemed attractive for an experiment, but a new problem
appeared: p is a complex number whose imaginary part (frequency !) is shown in
figure 5. At the generation threshold the frequency is 0.5 (in units of 1/�0�R

2 ). At
slightly higher Rm the field grows in some frequency interval round 0.5. As the
frequency depends on the wave length, the growing wave packet acquires a positive
group velocity. This means that all growing magnetic-field perturbations would move in
the direction of the flow with approx. 25% of the axial velocity of the flow. In a real
experiment, any growing perturbation would reach the end of the apparatus and the
generating process would cease if no new perturbation is created on the other end. In
summary, this device would work as an amplifier but not as a generator. Such type of
generation is refered to as a convective instability. It occurs in many hydrodynamic,
plasma physics, vacuum, and solid state electronics phenomena for which a certain
direction z is not equivalent to its reflection �z. Concepts of convective, absolute, and
global instability form a huge subject extending far beyond the scope of this article. Our
guidance was derived from a short chapter on pipe flow stability (pages 138–142) in
Landau and Lifshitz (1954); for more details, see Pitaevskii and Lifshitz (1981). A
famous example of convective instability is the wind tunnel experiment of Schubauer
and Skramstad (1947). If a similar experiment were done on the basis of the
Ponomarenko model one would observe the magnetic-field amplification in a certain
frequency range. The higher Rm, the wider this range, as shown in figure 6. However,
the amplification in an experiment of our length seems to be less than three-fold.

Figure 5. Equation (2) solved numerically for (kr, !) at selected � and for (kr, �) at selected ! with ki¼ 0,
vz¼ 1.3OR.
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4. Converting Ponomarenko’s model into an experiment

To transform the convective instability into a real generation process the equation
should have eigen-solutions with zero value at infinity. Otherwise there will be only
amplification or deformation of an outside applied field. Due to the properties of the
Km-function, Ponomarenko’s solution decays at radial infinity. However, this is not the
case for the axial infinity. Therefore, zero boundary conditions should be applied on
both ends of the experiment z¼�L/2. These two conditions require the superposition
of two �exp(ikzþ i!t) type solutions, both having the same frequency, but different k
values. This cannot be done because, as shown in figure 5, for each frequency there is
only one k value. This fact is related to the non-zero group velocity – any single zero has
equal frequencies on both sides. Theoretically, the group velocity could be modified by
moving the outer conductor in the opposite direction, i.e. by replacing it with a reverse
channel. For practical reasons equal flow rates in the direct and in the reverse flow are
preferable. Unfortunately, for such a two flow model the critical Rm appears
disproportionately large (see the right top corner on figure 10 later in this section).
A reasonable compromise is obtained from a model with three volumes of conducting
material: the internal cylinder is in helical downward motion; the middle annular region
possesses straight upward flow; an outer annular region is filled with sodium at rest
(figures 3 and 7); the insulator on the outside is envisaged to be the fourth unbounded
volume. If each of these volumes moves as a solid, the solutions are again of the
Ponomarenko type. This means, only the Im-function in the internal cylinder, only Km-
function on the very outside, and a superposition of Im and Km in the two annular
domains in between. The continuity condition now becomes a complex determinant of
the 12th order instead of the simple equation (2). Presentation of the resulting
characteristic equation on paper is quite demanding, but it is not a problem to solve it
on the computer.

Choosing appropriate channel cross-sections, the group velocity can be significantly
reduced or even made equal to zero. The exact zero is not even necessary because the
key is to find two solutions with the same frequency but different k and at as small as
possible Rm. In the complex plane, the point with zero-group velocity is, by definition,
the saddle point for the function !(k), and the branch point for the inverse function

Figure 6. Spatial amplification in a Ponomarenko setup occurring in a certain frequency interval. Equation
(2) numerically solved for (ki, kr) versus ! at different Rm with � ¼ 0 and vz¼ 1.3OR.
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k(!). The two desired solutions are in the vicinity of this point. Instead of seeking for

one-frequency solutions with two different real k (which, in general, does not exist), we

need to use wave numbers with some (in practice small) imaginary part ki. The

compatibility condition is still a complex equation of the form (3). The numerical

solution for two real arguments (kr, !) produces neutral (�¼ 0) curves at different ki
values which are plotted in figure 8(a) with kr versus Rm and in figure 8(b) with ! versus

Rm. The curves in figure 8(a) form an envelope. Its leftmost point corresponds to a

zero-complex group velocity. On the whole envelope, the complex group velocity is

imaginary. Hence on the upper branch of the ki ¼ constant curve (before touching the

envelope) the real part of group velocity vgr is positive, behind the tangent point it is

negative. Figure 8(b) shows that in some ki range the curves intersect themselves. These

intersection points give the desired solution: two different kr values correspond to the

same frequency ! and to the same imaginary part ki. To see the nodes better,

the intersection topology in an expanded form is repeated in figure 8(d). Based on this

observation, the computer program can now solve a set of two complex equations of the

type of (3):

Fð p, k, 1,Rm, geometryÞ ¼ 0 , ð5aÞ

Fð p, kþ 2�=L, 1,Rm, geometryÞ ¼ 0 ð5bÞ

for four real variables kr, ki, ! and Rm. This procedure gives two solutions the
superposition which provides a fit for an experiment of length L.

In figure 8(a), three different critical Rm values are marked: Rm* denotes the

convective instability which starts at the leftmost point of the curve ki¼ 0; Rm** (the

leftmost point of the envelope) denotes the absolute instability where magnetic-field

generation would start for an infinitely long model; Rm*** – the global instability,

where generation starts for a finite-length model.
Figure 8(c) gives the shape of the eigenfunction at Rm* and Rm***. The

eigenfunction for Rm*** is a superposition of two solutions. This gives a standing

wave which differs from the classical standing wave by the amplitude deformed by ki.

The group velocities in both solutions are opposite. The situation is common in optical

Figure 7. (Colour online). Mathematical model of the Riga dynamo experiment.
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lasers where two light beams go in opposite directions. A notable difference concerns,
however, the relevant lengths – lasers use to contain many wavelengths, the dynamo just
a few.

The curve self-crossing in figure 8(b) occurs in a small ki interval (0.0745
�ki5 0.0877), where for experimental use is suitable only for a tiny part
(0.08475�ki5 0.0877). The crossing is at such a small angle that without magnifi-
cation it is not visible. The approximate nature may raise doubts on the accuracy of the
Rm*** determination from this intersection, on which relies the credibility of the whole
project. Roughly speaking: the success of whole enterprise seems hidden in the third
digit after the decimal point!

The source of this is in a sequence in which equation set (5a,b) is solved. Solving against
Gauss rules is a bad practice of course. Nevertheless, while codes internal accuracy allow
such and dependence on a single boundary parameter L appears smooth, the above
explanation is meaningful. The problem is with solid velocity profiles only. Polynomial
profiles expand figure 8(b) enough, and so there is no need for figure 8(d).

There are two better ways of solving:

(i) Rearranging variables between axis variables and curve parameters transfers
figure 8 into figure 9. Intersection points (dots) in figure 9(b) are well defined

(a) (b)

(c) (d)

Figure 8. Numerical solution for solid profile model with Riga setup proportions at different ki. �¼ 0.
Expected threshold conditions are marked by crosses þ. (a) Three dynamo thresholds of different kind, (b)
Dashed line merges at infinity, all crosspoints inside, (c) Eigenfunction forms at Rm* (left) and Rm*** (right)
and (d) (Colour online) Expanded self-crossing area. !c(Rm) is middle line between two branches of singular
curve (ki¼�0.0877).
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to find ! for each Rm. Vertical distance between corresponding dots in left
plot gives jk1� k2j ¼ 2�/L. But for verbal discussion, figure 9 is less rich than
figure 8.

(ii) It is numerically best to iterate (5a,b) by four-dimensional Newton-Raphson
code with Gauss elimination rules included. We get all our numerical data this
way. For any practical purpose all three ways are equally good.

Based on this model, the experiment was computed and numerically optimized for

self-excitation at minimum Rm. Since the motor power consumption raises as Rm3, the

critical Rm has to be as small as possible for a successful experiment. The optimization,

constrained by the given volume of sodium (2m3), concerned four sizes: the total length,

the outside diameter, and the two internal diameters. As an example, the critical Rm

versus reverse-flow diameter is given in figure 10. The actual diameter is marked there

with *. The rightmost point corresponds to the limit of a two-chamber version with the

reverse-flow diameter equal to the external one. The unreachable Rm value indicates

that without external sodium at rest the experiment would not be possible.

(a) (b)

Figure 9. Figure 5 from Gailitis and Freibergs (1980b) adopted to our experiment. Curves are labeled
by Rm.

Figure 10. Optimization of reverse flow diameter D2 at D1¼ 25 cm and D3¼ 80 cm.
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Another optimization concerns the flow profile in the central cylinder. The

propeller-generated velocity profile in the inner cylinder differs from the solid body

motion. It is easy to take this into account by representing the measured velocity

profiles by a polynomial approximation and the internal I-functions by the

corresponding power series evaluated directly from equation (1). This creates no

practical problem, because in most cases the internal I-function is computed from

power series anyway. Testing different profiles numerically, the solid body profile

was not found to be the best. Better profiles are characterized by an axial flow with

a clear maximum at the center. In contrary, the azimuthal flow maximum has to be

as far from center as possible. Without taking special measures the real situation in

typical propeller wakes is opposite – usually the rotation concentrate close to the

axis. To prevent this, two arrays of carefully designed vanes were installed both in

front and behind the propeller. As a result, water tests in the actual dynamo module

had shown acceptable profiles. After polynomial approximation they were included

in our computer code to predict growth rates and frequencies (figure 11). The better

flow shape happens to compensate for a somewhat too low rotation so that the

generation starts close to solid body prediction.
The approximate character of the used model should always be kept in mind

because the limited length experiment is treated as a very long one. Properly

addressing the end problem, the internal field and current (field derivatives) should

match the external solution which disappear at z infinity. Only for an infinitely

long model (close to the absolute instability point Rm**) is it sufficient to require

jk1� k2jL¼ 2�, as superposition exp(ik1z)� exp(ik2z)¼ 2i sin[(k1� k2)z/2]exp[i(k1� k2)z/2]

at the endpoints equals to zero and all its derivatives there tend to zero when k1
tends to k2 canceling external solution. Since the eigenfunction is composed of two

solutions with different k values, the magnetic-field distribution depends on the

radius. Any superposition of the two solutions reaches zero at a certain radius, but

at other radii they differ from zero. Hence, at limited lengths, zeros at ends are not

strictly ensured.
Despite all those uncertainties, the experiment was designed on the basis of the model

sketched above and it actually works very close to what was expected.

(a) (b)

Figure 11. (Colour online). Observed field growth rate (a) and frequency (b) compared with prediction.
1D-present model, 2D-numerical integration on 2D grid. Internal wall resistance accounted/unaccounted.
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5. Conclusions

This article touched upon two asymptotic approaches. Ponomarenko used the

standard Bessel function asymptotic (i.e. asymptotic in radial direction). This

appeared to give a sufficient proof of growing field existence, for which it was

intended, but was not accurate enough to calculate the actual threshold of self-

excitation. Contrarily, the asymptotic approach in axial direction, which seemed to be

based on a potentially dubious assumptions, gave a satisfactory assessment of the

generation threshold.
The main experimental result is that the experiment works and works very close to

what was expected. Specifically our concerns are with the generation threshold, the

spatial shape of the field and the main frequency. The saturated field is rather high,

about 0.1T, i.e. about one order higher than in Karlsruhe. The record of the field time

dependence is rather rich. Apart from the main frequency, we also see the third and fifth

harmonics, two doublets from mixing main frequency with propeller and its wing rates

and a long turbulent tail. Despite the presence of turbulence in frequency spectra it

plays no role in a main generation process.
There remains much to be done. After enhancing cooling, we hope to run experiment

at more stable temperature for exploring saturated field scaling properties, etc. By

modifying velocity profiles there, it seems possible to reach even chaotic generation

(Stefani et al. 2011).
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