
Self-Testing Approach and Testing Tools

Valdis Vizulis, Edgars Diebelis

Datorikas Institūts DIVI, A. Kalniņa str. 2-7, Rīga, Latvia, edgars.diebelis@di.lv

The paper continues to analyse the self-testing approach by comparing features
of the self-testing tool developed with those of seven globally acknowledged
testing tools. The analysis showed that the features offered by the self-testing
tool are equal to those provided by other globally acknowledged testing support
tools, and outperform them in instances like testing in the production environ-
ment, testing of databases and cooperation in testing with external systems. Fur-
thermore, the self-testing approach makes it possible for users with minimal IT
knowledge to perform testing.

Keywords. Testing, Smart technologies, Self-testing, Testing tools.

Introduction

Already since the middle of the 20th century, when the first programs for comput-
ers were written, their authors have been stumbling on errors. Finding errors in
programs was rather seen as debugging, not testing. Only starting from 1980s,
finding errors in a program in order to make sure that the program is of good quality
became the main goal of testing. [1]

Since then, software requirements and their complexity accordingly have grown
constantly. Along the way, various testing methods, strategies and approaches have
been developed. If years ago testing was done mainly manually, in our days, as
system volumes and complexity grow, various automated solutions that are able to
perform the process as fast as possible and consuming as possibly little resources
are sought after.

One of ways of saving both time and resources consumed, improving the quality
of the system at the same time, is the system self-testing approach [2]. This ap-
proach is one of smart technologies, and it enables the system to verify itself that the
software is working correctly. Smart technology is based on the idea of software that
is able to “manage itself” by ensuring a control over internal and external factors
of the software and reacting to them accordingly. The concept of smart technologies
besides a number of significant features also includes external environment testing
[3, 4], intelligent version updating [5], integration of the business model in the soft-

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2012. Vol. 787
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 27–49 P.

LURaksti787-datorzinatne.indd 27LURaksti787-datorzinatne.indd 27 23.10.2012 12:02:2923.10.2012 12:02:29

ware [6]. The concept of smart technologies is aiming at similar goals as the concept
of autonomous systems developed by IBM in 2001 [7, 8, 9].

The key feature of self-testing is the possibility to integrate the testing support
option in the system to be tested, in this way ensuring automated testing at any time
and in any of the following environments: development, testing and production. To
demonstrate the usefulness of the self-testing approach, a self-testing tool that can
be compared with globally popular testing tools has been developed. Therefore, the
main goal of this paper was, by studying and comparing the concepts, builds and
features of various globally recognized testing tools, to evaluate the usefulness of
the self-testing approach and tool, directions for further development and opportu-
nities in the area of testing.

As shown in [10, 11], self-testing contains two components:
• Test cases of system’s critical functionality to check functions which are

substantial in using the system;
• Built-in mechanism (software component) for automated software testing

(regression testing) that provides automated storing and playback of tests
(executing of test cases and comparing the test results with the standard
values).

The defining of critical functionality and preparing tests, as a rule, is a part
of requirement analysis and testing process. The self-testing software is partly in-
tegrated in the testable system [12, 13], which has several operating modes; one
of them is self-testing mode when an automated execution of test cases (process
of testing) is available to the user. After testing, the user gets a testing report that
includes the total number of tests executed, tests executed successfully, tests failed
and a detailed failure description. The options provided by self-testing software are
similar to the functionality of testing support tools. Unlike them, the self-testing
software is part of the system to be developed. It means that there is no need to
install additional testing tools for system testing at the system developers, custom-
ers or users.

The paper is composed as follows: Chapter 1 describes the principles used
to select the testing tools to be compared with the self-testing approach. Also, the
selected testing tools are described in brief in this Chapter. Chapter 2 provides a
description of the criteria used to compare the self-testing approach and the testing
tools and a comparison of them.

1. Testing Tools

1.1. Selecting the testing tools

Nowadays a wide range of testing tools is available, and they are intended for
various testing levels on different systems. When developing one’s own testing tool,

28 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 28LURaksti787-datorzinatne.indd 28 23.10.2012 12:02:2923.10.2012 12:02:29

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

it is important to find out what testing tools are being offered by other developers
and what are their advantages and disadvantages.

Considering that the self-testing tool employs, in a direct way, the principles of
automated testing, various automated testing tools were selected for comparing. In
selecting the tools to be compared, the opinion of the Automated Testing Institute
(ATI), which is a leading authority in the field of testing, was used. Since May
2009, the ATI has been publishing its magazine Automate Software Testing [14],
which is one of the most popular in the field of testing and has its own website too
[15]. The website offers articles by experienced IT professionals on the automated
testing approach, frameworks and tools; the website has a list of 716 automated
testing tools available in the world and brief descriptions of them. Also, a closed
forum is active; its users are registered only after approval (currently there are
about 8,000 users registered).

The ATI organises an annual conference on automated testing, called Verify/
ATI [16], during which new approaches and tools are demonstrated and training on
them is provided. Since 2009, the company has been nominating the leading au-
tomated testing tools in various categories awarding them with the ATI Automation
Honors [17]. Winners of the award are selected by a committee that is composed
of IT professionals, and they study the tools (information on tools is obtained from
their official websites, documentation, various articles, blogs, forums etc) and nar-
row down the list of tools applied for the award to five finalists in each category and
sub-category (categories in 2010) [18]:

• Best open source code automated unit testing tool; sub-categories: C++,
Java, .NET.

• Best open source code automated functional testing tool; sub-categories:
WEB, Java, .NET, Flash/Flex.

• Best open source code automated performance testing tool; sub-categories:
WEB, WEB services/SOA.

• Best commercial automated functional testing tool; sub-categories: WEB,
Java, .NET, Flash/Flex, WEB services/SOA.

• Best commercial automated performance testing tool; sub-categories:
WEB/HTTPS, WEB services/SOA.

For the comparison of the self-testing approach and testing tools in this paper,
tools that have won an award in one of the aforementioned nominations were used.
In the following sub-chapters of this paper, some of the award winners that are most
similar to the self testing approach have been described in brief.

1.2. TestComplete

TestComplete is an automated self-testing tool developed by SmartBear; it pro-
vides the testing of Windows and web applications and is one of the leading func-
tional testing tools in the world. This is also proven by the fact that the tool has won
the ATI Automation Honors award as the Best Commercial Automated Functional
Testing Tool in 2010, and it is used in their projects by world’s leading companies
like Adobe, Corel, Falafel Software, ARUP Laboratories, QlikTech etc. [19]

29

LURaksti787-datorzinatne.indd 29LURaksti787-datorzinatne.indd 29 23.10.2012 12:02:2923.10.2012 12:02:29

Concept

The TestComplete tool uses a keyword-driven testing framework to perform
functional tests; in addition, with it it is possible to also develop tests with scripts.
Its operation concept is comparatively simple. As shown in Figure 1, the tool,
through inter-process communication and various built-in auxiliary tools, records
the actions performed in the tested system and after that also executes them.

 Inter-process
 communica�on

Tested system Test report

Figu re 1. TestComplete Concept

After each test, the tool creates a detailed report on the test execution, showing
the results of every command execution and the screenshots obtained during the
playback. In this way, TestComplete makes it possible to overview the errors found
in the test.

1.3. FitNesse

FitNesse is an open source code automated acceptance testing tool that can be
used to create tests in the Wiki environment through cooperation among testers,
developers and customers [20]. Wiki is a webpage content management system
that makes it possible to create new or edit existing web pages with a text editor or
a simple markup language [21].

In 2010, this tool won the ATI Automation Honors award as the best open
source code automated functional testing tool in the NET sub-category.

FitNesse is based on the black box testing principles and Agile manifestos:
• People and interaction over processes and tools;
• Operating software over comprehensive documentation;
• Cooperation with the customer over negotiating the contracts;
• Reacting to changes over following the plan.

The goal of this tool is to make acceptance testing automated and easy to create
and read also for people without in-depth IT knowledge. Consequently, customers
themselves can develop their own tests as the test creation principles are, to the
extent possible, tailored to the business logics. The engagement of the customer in
the testing process helps to define the system requirements more precisely and the
developers can better understand what the system has to do.

30 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 30LURaksti787-datorzinatne.indd 30 23.10.2012 12:02:2923.10.2012 12:02:29

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

Concept

The testing concept of FitNesse is based on four components:
1. A Wiki page in which the test is created as a Decision Table;
2. A testing system that interprets the Wiki page;
3. A test fixture called by the testing system;
4. The tested system run by the test fixture. [22]

In the test development process, only the Wiki page and the test fixture has
to be created over. Everything else is provided by the FitNesse tool and the tested
system.

Depending on the test system used, FitNesse provides test tables of various
types. To demonstrate the principles of how FitNesse works, the simplest test table,
Decision Table, is looked at.

If it is required to develop a test which tests the class that performs the expo-
nentiation of a number, then the following decision table has to be created on the
Wiki page:

|Exponentiation|
base	exponent	result?
2	5	32
4	2	16
1.5	2	2.25

The Wiki environment transforms the text into a more illustrative format (Table 1).

Table 1
FitNesse Decision Table

ExponentiationTest
base exponent result?
2 5 32
4 2 16
1.5 2 2.2

When executing the test, FitNesse delivers the table to the specified test sys-
tem, which interprets it and calls the following test fixture created by the system
developer (in this example, the test fixture is written in C#):

public class Exponen a onTest
{
 private double _base;
 private double _exponent;

 public void setBase(double base)
 {
 _base = base;
 }

31

LURaksti787-datorzinatne.indd 31LURaksti787-datorzinatne.indd 31 23.10.2012 12:02:2923.10.2012 12:02:29

 public void setExponent(double exponent)
 {
 _exponent = exponent;
 }

 public double result()
 {
 return TestedSystem.Exponen onClass.Exponent(_base, _exponent);
 }
}

The interpreting is done between titles in the table and the test fixture code.
The first row in the decision table contains the name of the test fixture class “Ex-
ponentiationTest”. The second row specifies the test fixture class methods that are
called in the same succession as the table columns are defined. For the methods
followed by a question mark also the returned value is read and then compared
with the expected value. Other methods set up the input data for the test fixture
class. When the test is finished, the returned values are compared with the ex-
pected values, and the results are shown in the following format:

Table 2
FitNesse Decision Table after Test

ExponentiationTest
base exponent Result?
2 5 32
4 2 16

1.5 2
2.2 expected
2.25 actual

Using this concept, system testing is generalised to business logics, and there-
fore the customers can participate in the process as they only have to additionally
master the principles for creating Wiki pages and test tables, not a programming
language. Furthermore, a Wiki page can be created also as the acceptance testing
documentation since the tables demonstrate the criteria that must be fulfilled for
the system developed to comply with the needs of the customer.

1.4. Ranorex

Ranorex is a typical graphic user interface testing tool that can be used by both
testers and developers to swiftly and easy create new and manage existing func-
tional tests. This tool has been appraised by the Automated Testing Institute: in
2010, this tool won its award as the best commercial automated functional testing
tool in the NET and Flash/Flex sub-categories. In the entire category, it won the
2nd place after the aforementioned test tool TestComplete.

32 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 32LURaksti787-datorzinatne.indd 32 23.10.2012 12:02:2923.10.2012 12:02:29

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

Customers that use this tool are globally known companies like Bosch, General
Electrics, FujitsuSiemens, Yahoo, RealVNC etc.

Concept

Like all popular modern graphic user interface testing tools, also Ranorex’s
concept is based on keyword-driven testing, recording the object, action and iden-
tifier.

2.

4.

3.

5.

1.

6.

Test report Tested system EXE or DLL

C# or VB.NET

Figure 2. Ranorex Concept

1. Ranorex records the actions performed in the tested system.
2. Ranorex transforms the recorded actions into C# or VB.NET code.
3. To make the testing more convenient also for developers, the created C#

or VB.NET code can be edited also in the Visual Studio development
environment.

4. An executable file or library is compiled from the code.
5. The compiled testing “program” executes the recorded actions on the tes-

ted system.
6. When the test is finished, a test report is generated in which the test sta-

tus is shown: successful or failed. For each test, detailed information can
be viewed (Figure 3).

33

LURaksti787-datorzinatne.indd 33LURaksti787-datorzinatne.indd 33 23.10.2012 12:02:2923.10.2012 12:02:29

Fi gure 3. Ranorex Test Case Report

1.5. T-Plan Robot

T-Plan Robot is a flexible and universal graphic user interface testing tool that
is built on image-based testing principles. This open source code tool does system
testing from the user’s perspective, i.e. visual. Since the tool is able to test systems
that cannot be tested with tools that are based on the object-oriented approach, in
2010 this tool won the ATI Automation Honors award as the best open source code
automated functional testing tool in the Java sub-category. Among the company’s
customers there are Xerox, Philips, Fujitsu-Siemens, Virgin Mobile and other.

Concept

Unlike many other typical functional testing tools, T-Plan Robot uses neither
data- nor keyword-driven testing. Instead, it uses an image-based testing approach.

This approach lets the tool be independent from the technology which the tes-
ted system is built or installed on. This tool is able to test any system that is depic-
ted on the operating system’s desktop.

T-Plan Robot works with desktop images received from remote desktop techno-
logies or other technologies that create images. For now, the tool only supports the
testing of static images and the RFB protocol, which is better known with the name
Virtual Network Computing. In future it is planned to add support for the Remote
Desktop Protocol and local graphic card driver. [23]

In Figure 4, it can be seen how the testing runs using the client-server prin-
ciple. The client and the server can cooperate through the network using the TCP/
IP Protocol, or locally, using the desktop driver. T-Plan Robot works as a client that
sends keyboard, mouse and clipboard events to the server. The tested system is
located on the server, which sends to the client changes in the desktop image and
the clipboard. T-Plan Robot is installed on the client’s system and runs on a Java
virtual machine, which makes the tool independent from the platform.

34 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 34LURaksti787-datorzinatne.indd 34 23.10.2012 12:02:2923.10.2012 12:02:29

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

Client machine

Client protocol using the TCP/IP or
local desktop drivers

Tested machine

Operētājsistēma Opera�ng System

Servers – RFB, RDP...

Remote/local
desktop

Remote/local

Keyboard,
mouse and
clipboard

events

Changes in
the desktop
image and

the clipboard

Opera�ng System

Java VM

T-Plan Robot n

Script
interpreter

Robot

Clients

RFB, RDP,

Java Test

Figure 4. T-Plan Robot Concept [23]

Tests are recorded by connecting to the remote desktop and running the tested
system. At this moment T-Plan Robot registers the sent input data and the received
changes in the desktop image or the clipboard and creates a test script.

The test is played back by executing the test script that contains the input data
to be sent to the tested system. The received changes in the desktop image and the
clipboard are compared with those registered when recording the test. At this mo-
ment the tool’s image comparison methods are used.

The Client–Server architecture can be provided in three various ways [23]:
1. One operating system with several desktops: only supported by Linux/

Unix as it lets run several VNC servers simultaneously;
2. One computer wits several operating system instances: supported by all

operating systems because, using virtualisation technologies (e.g. Virtual-
Box, VMware etc), the VNC server can be installed on the virtual computer;

3. Two separate computers: supported by all operating systems because
when the computers are connected in a network, one runs as a client and
the other as a server on which the tested system is installed.

1.6. Rational Functional Tester

The product offered by IBM, Rational Functional Tester (RFT), is an automated
object-oriented approach automated functional testing tool that is one of the com-
ponents in the range of lifecycle tools of the IBM Rational software.

35

LURaksti787-datorzinatne.indd 35LURaksti787-datorzinatne.indd 35 23.10.2012 12:02:2923.10.2012 12:02:29

Thi s tool is one of the most popular testing tools, but it has not won any ATI
Automation Honors awards. In 2009 and 2010, it was a finalist among the best
commercial automated functional and performance testing tools. It shows that now-
adays there appear more and more new and efficient automated testing tools to
which also RFT is giving up its positions in the market of testing tools.

Concept

IBM RFT was created to ensure automated functional and regress testing for
the testers and developers who require premium Java, NET and web applications
testing.

Java test
scripts

VB.NET test
scripts

Ra�onal Func�onal Tester
client processes

Tested
system

Inter-process
communica�on

Figu re 5. Rational Functional Tester Concept [24]

RFT does not have its own graphic user interface. Instead, RFT uses Eclipse,
a development environment that Java users are well familiar with, or Visual Studio
that is used by NET developers (Figure 5). In these development environments,
RFT adds during installation an additional functionality that makes it possible to
record, play back, edit and manage tests. [24]

When the test is recorded, all the actions that take place in the tested system
are at once transformed by RFT into Java or VB.NET test scripts. During the re-
cording process, the tester themselves has to create control points for RFT to reg-
ister the expected system state (e.g. field value, object attribute, system screenshot
etc) and later, when the test is played back, to compare that state with the current
state.

When playing back the test, RFT executes the test scripts generated during the
recording and compares the result of every executed action with the result of the
recorded action. If test points are defined in the test script, RFT performs verifi-
cation in relation to the expected system state defined in the test script. After the
execution of each test script, RFT generates a HTML file (log) that demonstrates
the test results and shows all the discrepancies for the expected system state.

36 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 36LURaksti787-datorzinatne.indd 36 23.10.2012 12:02:3023.10.2012 12:02:30

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

1.7. HP Unifi ed Functional Testing Software

HP Unified Functional Testing Software (HP UFTS), a tool offered by Hewlett
Packard, is a premium quality automated functional and regress testing tool set that
consists of two separate tools: HP Functional Testing Software (HP FTS) and HP
Service Test Software (HP STS).

HP FTS is better known as HP QuickTest Professional (HP QTP) and formerly
also as Mercury QuickTest Professional. HP FTS is based on HP QTP, but it has
been supplemented with various extensions. It replaced a formerly popular tool,
Mercury WinRunner, which was bought over by HP in 2006. Since most of the
tool’s functionalities overlapped (or were taken over to) with HP FTS, in 2008 it
was decided to terminate the support to the tool and it was recommended to transfer
any previously recorded tests to HP FTS. HP STS, in turn, is a tool developed by
HP itself, and it ensures automated functional testing of services with the help of
activities diagrams. [25]

By merging the tools, HP obtained one of the most popular functional and re-
gress testing tool in the world; in 2009, this tool won the ATI Automation Honors
award as the best commercial automated functional testing tool, and in 2010 it was
among the four finalists in the same category.

Concept

HP UFTS is a typical keyword- and data-driven testing tool that both makes
the creation and editing of tests easier and ensures wide coverage of tests for tested
systems.

To perform complete functional testing of a system, it is not sufficient to test the
graphic user interface as the system functionality is not limited to solely the visual
functionality. Many functionalities are “hidden” under the graphic user interface
on the level of components. It can be especially seen in systems that run accord-
ing to the principle “client-server”. These systems are called multi-level systems.

To ensure the testing of such systems, HP UFTS is based on the concept of
multi-level testing (Figure 6). HP UFTS distributes multi-level testing in three
levels [26]:

• graphic user interface testing;
• services and components testing;
• multi-level testing.

Graphic user interface testing is provided by HP FTS, which divides it
into two levels: business processes testing and applications testing. Business pro-
cesses testing can be done thanks to the test recording and playback functionality
and keyword-driven testing that significantly simplify the creation and editing of
tests and bring them closer to the business logics. Furthermore, to ensure quality
testing of applications, HP FTS, with the integrated script creation and debugging

37

LURaksti787-datorzinatne.indd 37LURaksti787-datorzinatne.indd 37 23.10.2012 12:02:3023.10.2012 12:02:30

environment, offers full access to graphic user interface objects and their features.
Consequently, HP FTS can be used to test both the process and the GUI level at
the same time.

Testing of components and services is done by HP STS, which makes it
possible to conveniently create functional tests for the invisible part of the tested
system. Tests are created with the help of activities diagrams, and programming is
only required for more complex tests; therefore, tests can be created also by users
not having knowledge in programming.

Multi-level testing is done by HP UFTS, which combines HP FTS and HP
STS in a single solution. HP UFTS can be used to test transactions that unites to-
gether the levels of the tested multi-level system. In this way, it is possible, in one
test scenario, to test graphic user interfaces as well as services and components.

Test results are generated after the execution of every test in all three testing
levels. Both HP FTS and HP STS show test results in two levels. The first level
shows general test results and statistics, and the second level offers a detailed de-
scription of the results of executing every command and a comprehensive descrip-
tion of every error. HP UFTS gathers the test results in a single report, where all
commands are distributed into either HP FTS or HP STS activities.

HP
 F

un
c�

on
al

Te

s�
ng

 S
o�

w
ar

e

Component level (services, components, API)

GUI level

Business
processes

tes�ng
GUI, business

Applica�on
tes�ng

GUI,
acceptance

tes�ng

Process level

Business
process 1

Business
process 2

GUI 1
.NET

GUI 2
Ajax

GUI 3
Java

C l

Component 1
Java, .NET API

l (i

Component 2
Web service

API)

Component 3
JMS service

H
P

Se
rv

ic
e

Te
st

 S
o�

w
ar

e Component
tes�ng

Web services,
API,

components,
items

Figure 6. HP UFTS Multi-level Testing Concept [26]

38 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 38LURaksti787-datorzinatne.indd 38 23.10.2012 12:02:3023.10.2012 12:02:30

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

As it can be seen in Figure 6, HP FTS enables the testing of both business pro-
cesses and applications, making it possible to test the process and the GUI levels
respectively in the tested system. Each business process is provided with one or
more graphic user interfaces in various setups.

Graphic user interface is the visible part of the tested system that calls various
components and services and receives from them the results to be showed to the
users. As it can be understood, a majority of system functionalities are located on
the system component level, and therefore HP STS offers the functional testing of
various services, application interfaces, components and items.

From the aspect of testing concept, HP FTS does not offer a new approach, but
in combination with HP STS this tool is able to offer different and diverse func-
tional testing in three levels. This multi-level functional testing makes it possible
to perform the testing prior to developing the graphic user interface, in this way
allowing a faster development of the system and increasing the quality of compo-
nents and services. Consequently, the overall quality of the graphic user interface
is increased.

1.8. Selenium

Selenium is an open source code web application testing framework developed
by OpenQA, and it consists of several testing tools. In the field of web applications
testing, this framework has been a stable leader for more than five years, and last
two years it has won the ATI Automation Honors award as the best open source
code automated functional testing tool. A factor that contributes significantly to the
advancement of this tool is that it is used in their testing projects by IT companies
like Google, Mozilla, LinkedIn and others.

Concept

The Selenium framework consists of three different tools [27]:
• Selenium IDE is a Selenium script development environment that makes

it possible to record, play back, edit and debug tests.
• Selenium Remote Control is a basic module that can be used to record

tests in various programming languages and run them on any browser.
• Selenium Grid controls several Selenium Remote Control instances to

achieve that tests can be run simultaneously on various platforms.
For test creation, Selenium has developed its own programming language, Sele-

nese, which makes it possible to write tests in different programming languages. To
execute tests, a web server is used that works as an agent between the browser and
web requests, in this way ensuring that the browser is independent.

39

LURaksti787-datorzinatne.indd 39LURaksti787-datorzinatne.indd 39 23.10.2012 12:02:3023.10.2012 12:02:30

Selenium IDE

Selenium Grid

Selenium
Remote Control

Tested
system

Test script

1. 2.

3.
4.

5.

6.

Figure 7. Selenium Concept [27]

1. Selenium IDE, using Mozilla Firefox browser, records the actions perfor-
med in the tested system.

2. All the recorded actions are recorded in the Selenese programming lan-
guage, and if required it is possible to export them to C#, Java, Perl, PHP,
Python or Ruby programming languages. After that, using a tool of any of
these programming languages, existing script tests can be complemented
or new test scripts can be created.

3. The commands recorded in the Selenium Remote Control test script are
transformed into web requests.

4. Selenium Grid reads the test script and creates several Selenium Remote
Control instances.

5. Selenium Grid simultaneously calls the created Selenium Remote Control
instances feeding the read test script as a parameter.

6. Selenium Remote Control forwards to the tested system the web requests
that comply with the commands defined in the test script.

It should be added that the concept of the Selenium framework does not require
the succession shown in Figure 7. Depending on the knowledge and experience of
the tester and the project’s needs, the succession can be modified. To create the
first tests, an inexperienced tester will certainly use the Selenium IDE develop-
ment environment. In this case, the testing will be done using the complete cycle
(scenarios in Figure 7 – 1, 2, 3 and 6 or 1, 2, 4, 5 and 6). To create more complex
tests, an experienced tester will usually skip the first two steps as the creation of
tests will be done in a development environment of a programming language sup-
ported by Selenium and the execution is provided for by Selenium Remote Control
and Selenium Grid (scenarios in Figure 7 – 3, 6 or 4, 5, 6).

40 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 40LURaksti787-datorzinatne.indd 40 23.10.2012 12:02:3023.10.2012 12:02:30

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

2. Comparison of the Self-Testing Tool with other Testing
Tools

The aim of this paper is to evaluate what features are offered by the self-testing
tool compared to other tools and to identify directions for further development. It is
difficult to determine from voluminous descriptions of tools what advantages and
disadvantages a tool has compared to other tools. Also, it is rather difficult to assess
which tool is best suited for a certain testing project. For this reason, it is important
to compare the tools using certain criteria, which are analysed hereinafter and on
the basis of which the tools will be compared.

2.1. Criteria for comparison

The criteria for comparison were selected on the basis of the possibilities of-
fered by those seven tools looked at herein. The following aspects were taken into
account by the author in selecting the criteria for comparison:

1. key features of testing;
2. key features of automated testing tools;
3. features offered by the compared tools.

Table 3 below lists the criteria used to compare testing tools and the question
arising from the criteria, and answers to the questions are provided in the tool
comparison tables (Table 4 and Table 5). To compare the self-testing tool and other
tools looked at in this paper, the criteria described in Table 3 were used.

Table 3
Criteria for Comparing Testing Tools

Comparison criteria Question
Test method (TM) [28] What test methods are supported?
Test automation
approach (TAA) [29]

What test automation approaches are used?

Test automation
framework (TAF) [30]

What test automation frameworks are used?

Testing level What test levels are supported?
Functional testing Is functional testing supported?
Non-functional testing What non-functional testing aspects are supported?
Platform What operating systems are supported?
Testable technology What technologies (usually programming languages) are

supported?
Test recording and
playback

Is test recording and automated reiterated playback
provided?

41

LURaksti787-datorzinatne.indd 41LURaksti787-datorzinatne.indd 41 23.10.2012 12:02:3023.10.2012 12:02:30

Desktop applications
testing

Is desktop applications testing provided?

Web applications testing Is web applications testing provided?
Services testing Is services testing provided?
Database testing Is it possible to test only the system database separately?
Testing in production
environment

Is testing in the production environment provided?

System user can create
tests

Can system users without in-depth IT knowledge create
tests?

Simultaneous running of
several tests

Can tests be run simultaneously?

Performing
simultaneous actions

Will the test performance not be disturbed if during the
test simultaneous actions are performed?

Identifying the tested
object

Is it able to tell apart the object to be tested from other
objects of the operating system?

Test result analysis Is a test result analysis offered after the test?
Test editing Is an editor for the created tests offered?
Screenshots Are screenshots of the tested system acquired during the

recording/playback of the test?
Control points Are control points offered?
Object validation If modifications take place in the tested system, is object

validation provided?
Object browser Is a browser/editor for objects of the tested system offered?
Test log Is a test performance log created?
Test schedule planner Is it possible to set the time for performing the test, e.g. at

night?
Identifi cation of the end
of command execution

Is the tool able to determine when the execution of the
previous command has ended (and a certain waiting time
is not used for this purpose)?

Plug-ins and extensions Is it possible to create own plug-ins and extensions to
expand the tool’s functionality?

Developer What company or person has developed (owns) the testing
tool?

Price How much the tool costs?
Convenience of use (1-5) On the scale from 1 (very inconvenient) to 5 (very

convenient) – how convenient it is to create tests (author’s
subjective assessment)?

Tool programming
language

In what programming languages it is possible to create
tests?

Client What companies use the tool in their testing projects?

42 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 42LURaksti787-datorzinatne.indd 42 23.10.2012 12:02:3023.10.2012 12:02:30

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

2.2. Comparison results

To assess every comparison criteria determined, information obtained from the
tool’s official website and other trusted websites, specifications and help windows
and from practical use of the test tools was used to make sure that they comply with
the respective criteria.

To ensure maximum objectivity of the comparison results, the author tried, to
the extent possible, avoid using his own subjective judgment and base the com-
parison on whether the tool offers a feature or not. To this end, the criteria in the
comparison provided in Table 4 and table 5 were evaluated using the following
three answers:

• Yes – it means that the tool supports the functionality referred to in the
criteria;

• Partially – it means that the tool partially supports the functionality re-
ferred to in the criteria;

• No – it means that the tool does not support the functionality referred to in
the criteria.

The paper contains two comparison tables: Table 4 provides a summary on the
comparison criteria that the self-testing tool supports, and Table 5 provides a sum-
mary on the comparison criteria that the self-testing tool does not currently support.

43

LURaksti787-datorzinatne.indd 43LURaksti787-datorzinatne.indd 43 23.10.2012 12:02:3023.10.2012 12:02:30

Table 4
Comparison of Testing Tools (Features Provided by Self-Testing Tool)

44 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 44LURaksti787-datorzinatne.indd 44 23.10.2012 12:02:3023.10.2012 12:02:30

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

Table 5
Comparison of Testing Tools (Features not Provided by Self-Testing Tool)

45

LURaksti787-datorzinatne.indd 45LURaksti787-datorzinatne.indd 45 23.10.2012 12:02:3123.10.2012 12:02:31

The next table (Table 6) shows the additional criteria for comparing the tools
that were not included in the previous tool comparison tables.

Table 6
Comparison of Testing Tools 2

Testing Tool Developer
Price
(EUR)

Con-
veni-
ence

Client
Tool ‘s
programming
language

Self-testing
tool

Datorikas
institūts
DIVI

* 5 * C#

TestComplete SmartBear
Software

~ 1 400 3

Adobe, Corel,
Falafel Software,
ARUP Laboratories,
QlikTech u.c.

VBScript,
Jscript,
C++Script,
C#Script,
DelphiScript

FitNesse Robert C.
Martin

Free 4 * Java

Ranorex Ranorex ~ 1 190 3

Bosch, General
Electrics,
FujitsuSiemens,
Yahoo, RealVNC
u.c.

C++, Python,
C#, VB.NET

T-Plan Robot T-Plan Free 3
Xerox, Philips,
FujitsuSiemens,
Virgin Mobile u.c.

Java

Rational
Functional
Tester

IBM
2 700 –
11 000

4 * Java, VB.NET

Selenium OpenQA Free 3
Google, Mozilla,
LinkedIn u.c.

C#, Java, Perl,
PHP, Python,
Ruby

HP Unifi ed
Functional
Testing
Software

Hewlett
Packard

3 000 –
10 000

4 * VBScript, C#

* – no/not available

3. Conclusions

To compare the seven testing tools, the author had to analyse not only their
builds but also their concepts in order to assess objectively what are the pros
and cons of the self-testing tool and what could be the directions for its further

46 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 46LURaksti787-datorzinatne.indd 46 23.10.2012 12:02:3123.10.2012 12:02:31

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

development. From the comparison of the seven tools, the following conclusions
can be drawn:

• The self-testing tool, TestComplete and FitNesse, thanks to the possibility
to access the internal structure of the tested system, offers the grey-box
testing (self-testing tool offers also white-box testing) method, which makes
it possible to test the system more detailed. The other testing tools employ
the black-box testing method;

• Among the seven tools looked at in this paper, only one uses an image-
based approach as the test automatisation approach. All the others use
the object-oriented approach. Consequently, it can be concluded that the
object-oriented approach is the most popular for the automatisation of
tests;

• In comparison to the other tools described in this paper, the self-testing
tool provides for a wide range of testing levels, as TestComplete is the only
one that, in addition to unit, integration, regress, functional and acceptance
testing, offers also stress and load testing, while the others are limited to
only three testing levels. It has to be noted that, considering the ability of
self-testing to run parallel tests, it would be comparatively simple to imple-
ment the stress and load testing support also in the self-testing tool.

• Of the test automation tools dealt with in this paper, FitNesse is the only
one that does not provide the test recording and playback functionality.
Instead of it, a convenient creation of tests in table format is offered.

• Just a few testing tools offer such features included in the self-testing tool
as database testing, simultaneous execution of tests and parallel actions
during testing, whereas almost all testing tools offer the identification of
the tested object, test result analysis and the adding of control points to
the test;

• Only the self-testing tool offers the possibility to run testing in the pro-
duction environment and the possibility to create tests for users without
in-depth IT knowledge;

• The self-testing tools and Ranorex are the only one that do not offer the
feature of adding existing or new plug-ins and extensions;

• The self-testing tool is not the only one that requires additional resources
prior to creating tests, as also for FitNesse test fixtures must be developed
for successful performance of the tests.

A number of the criteria listed in table 5 and currently not supported by the
self-testing tool can be implemented through comparatively minor improvements
to the tool. For example, to achieve that the self-testing tool supports performance
testing, just a new test point that would control the performance of action execution
needs to be implemented.

Self-testing is a new and original approach that does not lag behind other tools,
and in some areas it is undoubtedly even better.

47

LURaksti787-datorzinatne.indd 47LURaksti787-datorzinatne.indd 47 23.10.2012 12:02:3123.10.2012 12:02:31

IEGULDĪJUMS TAVĀ NĀKOTNĒ

This work has been supported by the European Social Fund within the project «Support for Doctoral Studies at
University of Latvia».

References

1. Wikiversity. [Online] [Quoted: 24 January, 2011] http://en.wikiversity.org/wiki/Software_testing/
history_of_testing.

2. Bičevska, Z., Bičevskis, J.: Smart Technologies in Software Life Cycle. In: Münch, J., Abra-
hamsson, P. (eds.) Product-Focused Software Process Improvement. 8th International Conference,
PROFES 2007, Riga, Latvia, July 2-4, 2007, LNCS, vol. 4589, pp. 262-272. Springer-Verlag,
Berlin Heidelberg (2007).

3. Rauhvargers, K., Bicevskis, J.: Environment Testing Enabled Software - a Step Towards Execution
Context Awareness. In: Hele-Mai Haav, Ahto Kalja (eds.) Databases and Information Systems,
Selected Papers from the 8th International Baltic Conference, IOS Press vol. 187, pp. 169-179
(2009)

4. Rauhvargers, K.: On the Implementation of a Meta-data Driven Self Testing Model. In: Hruška,
T., Madeyski, L., Ochodek, M. (eds.) Software Engineering Techniques in Progress, Brno, Czech
Republic (2008).

5. Bičevska, Z., Bičevskis, J.: Applying of smart technologies in software development: Automated
version updating. In: Scientific Papers University of Latvia, Computer Science and Information
Technologies, vol .733, ISSN 1407-2157, pp. 24-37 (2008)

6. Ceriņa-Bērziņa J.,Bičevskis J., Karnītis Ģ.: Information systems development based on visual
Domain Specific Language BiLingva. In: Accepted for publication in the 4th IFIP TC2 Central
and East European Conference on Software Engineering Techniques (CEE-SET 2009), Krakow,
Poland, Oktober 12-14, 2009

7. Ganek, A. G., Corbi, T. A.: The dawning of the autonomic computing era. In: IBM Systems
Journal, vol. 42, no. 1, pp. 5-18 (2003)

8. Sterritt, R., Bustard, D.: Towards an autonomic computing environment. In: 14th International
Workshop on Database and Expert Systems Applications (DEXA 2003), 2003. Proceedings,
pp. 694 - 698 (2003)

9. Lightstone, S.: Foundations of Autonomic Computing Development. In: Proceedings of the
Fourth IEEE international Workshop on Engineering of Autonomic and Autonomous Systems,
pp. 163-171 (2007)

10. Diebelis, E., Takeris, V., Bičevskis, J.: Self-testing - new approach to software quality assurance.
In: Proceedings of the 13th East-European Conference on Advances in Databases and Informa-
tion Systems (ADBIS 2009), pp. 62-77. Riga, Latvia, September 7-10, 2009.

11. Bičevska, Z., Bičevskis, J.: Applying Self-Testing: Advantages and Limitations. In: Hele-Mai
Haav, Ahto Kalja (eds.) Databases and Information Systems, Selected Papers from the 8th Inter-
national Baltic Conference, IOS Press vol. 187, pp. 192-202 (2009).

12. Diebelis, E., Bičevskis, J.: An Implementation of Self-Testing. In: Proceedings of the 9th In-
ternational Baltic Conference on Databases and Information Systems (Baltic DB&IS 2010),
pp. 487-502. Riga, Latvia, July 5-7, 2010.

13. Diebelis, E., Bicevskis, J.: Test Points in Self-Testing. In: Marite Kirikova, Janis Barzdins (eds.)

48 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 48LURaksti787-datorzinatne.indd 48 23.10.2012 12:02:3123.10.2012 12:02:31

Valdis Vizulis, Edgars Diebelis. Self-Testing Approach and Testing Tools

Databases and Information Systems VI, Selected Papers from the Ninth International Baltic Con-
ference. IOS Press vol. 224, pp. 309-321 (2011).

14. Automated Software Testing Magazine. [Online] [Quoted: 20 January, 2011] http://www.automa-
tedtestinginstitute.com/home/index.php?option=com_conten t&view=article&id=1276&Item
id=122.

15. Automated Testing Institute. [Online] [Quoted: 15 January, 2011] http://www.automatedtestin-
ginstitute.com.

16. Verify/ATI Conference. [Online] [Quoted: 2011. gada 12. maijā.] http://www.verifyati.com.
17. ATI Automation Honors. [Online] [Quoted: 20 January, 2011] http://www.automatedtestinginsti-

tute.com/home/index.php?option=com_conten t&view=article&id=1262&Itemid=131.
18. ATI Schedule & Selection Process. [Online] [Quoted: 16 January, 2011] http://www.automa-

tedtestinginstitute.com/home/index.php?option=com_content&view=article&id=1283&Item
id=156.

19. SmartBear Software. [Online] [Quoted: 15 December, 2010] http://www.automatedqa.com/pro-
ducts/testcomplete/.

20. Testing Geek - FitNesse Introduction. [Online] [Quoted: 3 April, 2011] http://www.testinggeek.
com/index.php/testing-tools/test-execution/95-fitnesse-introduction.

21. Wikipedia - Wiki. [Online] [Quoted: 10 April, 2011] http://en.wikipedia.org/wiki/Wiki.
22. Wikipedia. [Online] [Quoted: 10 April, 2011] http://en.wikipedia.org/wiki/FitNesse.
23. T-Plan Robot Enterprise 2.0 Tutorial. [Online] [Quoted: 17 April, 2011] http://www.t-plan.com/

robot/docs/tutorials/v2.0/index.html.
24. IBM Help System. [Online] [Quoted: 19 April, 2011] http://publib.boulder.ibm.com/infocenter/

rfthelp/v7r0m0/index.jsp?topic=/com.ibm.rational.test.ft.proxysdk.doc/topics/c_pr_architectu-
re.html.

25. HP - Looking for Mercury Interactive? [Online] [Quoted: 9 May, 2011] https://h10078.www1.hp.com/
cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-10^36653_4000_100__&jumpid=
reg_R1002_USEN#.

26. HP Unified Functional Testing software. [Online] [Quoted: 6 May, 2011] https://h10078.
www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24^1352_
4000_100__.

27. Selenium Web Application Testing System. [Online] [Quoted: 30 April, 2011] http://seleniumhq.
org/.

28. Pressman Roger, S. Software Engineering - A Practioner’s approach 5th edition. New York : The
McGraw-Hill Companies, Inc., 2001.

29. T-Plan Robot - Image Based vs Object Oriented Testing. [Online] [Quoted: 3 April, 2011] http://
www.t-plan.com/robot/docs/articles/img_based_testing.html

30. Automatic Testing Frameworks. [Online] [Quoted: 19 April, 2011] http://www.automatictes-
tingframeworks.com/?q=test_automation_framework.

49

LURaksti787-datorzinatne.indd 49LURaksti787-datorzinatne.indd 49 23.10.2012 12:02:3123.10.2012 12:02:31

