AN ANALYSIS OF SMOOTHING-INTERPOLATING PROBLEMS ${ }^{1}$

S. ASMUSS ${ }^{1,3}$, N. BUDKINA ${ }^{2,3}$ and J. BREIDAKS ${ }^{1}$
${ }^{1}$ University of Latvia
Zellu street 8, Riga, LV-1002, Latvia
${ }^{2}$ Riga Technical University
Meza street 1/4, Riga, LV-1048, Latvia
E-mail: svetlana.asmuss@lu.lv, budkinanat@gmail.com, juris.breidaks@csb.gov.lv
${ }^{3}$ Institute of Mathematics and Computer Science of University of Latvia
Rainis blvd. 29, Riga, LV-1459, Latvia

The talk deals with the smoothing - interpolating (smoothing for a part of data and interpolating for the rest) problems in the abstract setting of a Hilbert space. Let X, Y be Hilbert spaces and assume that linear operators $T: X \rightarrow Y, A_{1}: X \rightarrow \mathbb{R}^{n}$ and $A_{2}: X \rightarrow \mathbb{R}^{m}$ are continuous. We consider the conditional minimization problem

$$
\begin{equation*}
\|T x\| \longrightarrow \min _{x \in H}, \tag{1}
\end{equation*}
$$

where restrictions given by A_{1} (interpolating conditions) and A_{2} (smoothing conditions) describe the set $H \subset X$.

We use known results separately for the problems of pure interpolation and for the problems of pure smoothing. For a given vector $\boldsymbol{u} \in \mathbb{R}^{n}$ in the case $H=H_{1}=\left\{x \in X: \quad A_{1} x=\boldsymbol{u}\right\}$ a solution of (1) is a spline from the space $S\left(T, A_{1}\right)=\left\{s \in X:<T s, T x>=0\right.$ for all $\left.x \in \operatorname{Ker} A_{1}\right\}$ (called the interpolating spline). For a given vector $\boldsymbol{v} \in \mathbb{R}^{m}$ and parameters $\delta, \varepsilon_{i}>0, i=1, \ldots, m$, in the case $H=H_{2}$ or $H=H_{3}$, where

$$
H_{2}=\left\{x \in X: \quad\left|\left(A_{2} x\right)_{i}-v_{i}\right| \leq \varepsilon_{i}, i=1, \ldots, m\right\}, \quad H_{3}=\left\{x \in X: \quad \sum_{i=1}^{m}\left(\left(A_{2} x\right)_{i}-v_{i}\right)^{2} \leq \delta\right\},
$$

a solution of problem (1) is a spline (called the smoothing spline) from the space $S\left(T, A_{2}\right)$. It should be noted that some results proved for smoothing splines in the case $H=H_{2}$ are true also when $\varepsilon_{i}=0$ for some i, i.e. the corresponding interpolation conditions are fulfilled.

In this talk we consider problem (1) with mixed interpolating and smoothing conditions: $H=H_{1} \cap H_{2}$ or $H=H_{1} \cap H_{3}$. The solutions of such problems belong to the space of splines $S\left(T, A_{1} \times A_{2}\right)$. We call these splines mixed interpolating - smoothing splines by analogy with the solution of the following conditional minimization problem:

$$
\begin{equation*}
\|T g\|^{2}+\frac{1}{\omega}\left\|A_{2} x-\boldsymbol{v}\right\|^{2} \longrightarrow \min _{x \in H_{1}} \tag{2}
\end{equation*}
$$

where the initial data \boldsymbol{u} are interpolated and the initial data \boldsymbol{v} are smoothed. Note that problem (2), which to a certain extent is connected with problem (1) considered here, was investigated by different authors (A.Y. Bezhaev, V.A. Vasilenko, C. Conti, S.N. Kersey and others).

[^0]
[^0]: ${ }^{1}$ This work is partially supported by the project $2009 / 0223 / 1 \mathrm{DP} / 1.1 .1 .2 .0 / 09 /$ APIA/VIAA/008 of the European Social Fund and by the grant 09.1570 of the Latvian Council of Science.

