Abstracts of MMA2010, May 26 - 29, 2010, Druskininkai, Lithuania © VGTU, 2010

AN ANALYSIS OF SMOOTHING–INTERPOLATING PROBLEMS¹

S. ASMUSS $^{1,3},$ N. BUDKINA 2,3 and J. BREIDAKS 1

¹ University of Latvia

Zellu street 8, Riga, LV-1002, Latvia ² Riga Technical University Meza street 1/4, Riga, LV-1048, Latvia

E-mail: svetlana.asmuss@lu.lv, budkinanat@gmail.com, juris.breidaks@csb.gov.lv ³ Institute of Mathematics and Computer Science of University of Latvia Rainis blvd. 29, Riga, LV-1459, Latvia

The talk deals with the smoothing – interpolating (smoothing for a part of data and interpolating for the rest) problems in the abstract setting of a Hilbert space. Let X, Y be Hilbert spaces and assume that linear operators $T: X \to Y, A_1: X \to \mathbb{R}^n$ and $A_2: X \to \mathbb{R}^m$ are continuous. We consider the conditional minimization problem

$$||Tx|| \longrightarrow \min_{x \in H},\tag{1}$$

where restrictions given by A_1 (interpolating conditions) and A_2 (smoothing conditions) describe the set $H \subset X$.

We use known results separately for the problems of pure interpolation and for the problems of pure smoothing. For a given vector $\mathbf{u} \in \mathbb{R}^n$ in the case $H = H_1 = \{x \in X : A_1 x = \mathbf{u}\}$ a solution of (1) is a spline from the space $S(T, A_1) = \{s \in X : \langle Ts, Tx \rangle = 0 \text{ for all } x \in \text{Ker}A_1\}$ (called the interpolating spline). For a given vector $\mathbf{v} \in \mathbb{R}^m$ and parameters $\delta, \varepsilon_i > 0, i = 1, \ldots, m$, in the case $H = H_2$ or $H = H_3$, where

$$H_2 = \{ x \in X : |(A_2x)_i - v_i| \le \varepsilon_i, \ i = 1, \dots, m \}, \qquad H_3 = \{ x \in X : \sum_{i=1}^m ((A_2x)_i - v_i)^2 \le \delta \},$$

a solution of problem (1) is a spline (called the smoothing spline) from the space $S(T, A_2)$. It should be noted that some results proved for smoothing splines in the case $H = H_2$ are true also when $\varepsilon_i = 0$ for some *i*, i.e. the corresponding interpolation conditions are fulfilled.

In this talk we consider problem (1) with mixed interpolating and smoothing conditions: $H = H_1 \cap H_2$ or $H = H_1 \cap H_3$. The solutions of such problems belong to the space of splines $S(T, A_1 \times A_2)$. We call these splines mixed interpolating – smoothing splines by analogy with the solution of the following conditional minimization problem:

$$||Tg||^2 + \frac{1}{\omega} ||A_2 x - v||^2 \longrightarrow \min_{x \in H_1}$$
(2)

where the initial data \boldsymbol{u} are interpolated and the initial data \boldsymbol{v} are smoothed. Note that problem (2), which to a certain extent is connected with problem (1) considered here, was investigated by different authors (A.Y. Bezhaev, V.A. Vasilenko, C. Conti, S.N. Kersey and others).

¹This work is partially supported by the project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008 of the European Social Fund and by the grant 09.1570 of the Latvian Council of Science.