HIGHER ORDER FINITE DIFFERENCE SCHEMES FOR PERIODICAL BOUNDARY CONDITIONS ${ }^{1}$

AIGARS GEDROICS ${ }^{1}$ and HARIJS KALIS ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, University of Latvia
Zellu iela 8, Rīga, LV-1002, Latvia
${ }^{2}$ Institute of Mathematics and Computer Science of University of Latvia
Raiņa bulvāris 29, Rīga, LV-1459, Latvia
E-mail: aigors@inbox.lv, kalis@lanet.lv

For approximation of the operator $-\frac{\partial^{2}}{\partial x^{2}},(x \in[0, L])$ with periodical boundary conditions finite difference expressions with the different order of approximation are investigated. We consider corresponding discrete spectral problem $A y=\mu y$ for finite difference operator on uniform grid $x_{j}=j h, j=\overline{1, N}, N h=L$ where h is the grid parameter, μ is eigenvalue and A, y are the circulant matrix and column-vector of N order (eigenvector) with elements $y_{j}, j=\overline{0, N}$.

We use from two vectors y^{1}, y^{2} following scalar product $\left[y^{1}, \bar{y}^{2}\right]=h\left(\sum_{j=1}^{N} y_{j}^{1} \bar{y}_{j}^{2}\right)$, where \bar{y} is the conjugate value of y. The corresponding discrete spectral problem $A y^{n}=\mu_{n} y^{n}, n=\overline{1, N}$ with circulant matrix A have following eigenvectors: $y^{n}=C_{n}^{-1}\left(y_{1}^{n}, y_{2}^{n}, \ldots, y_{N}^{n}\right)^{T}$, where $y_{j}^{n}=\exp \left(2 \pi i n x_{j} / L\right)$, $j=\overline{1, N}, i=\sqrt{-1}$ are the components of column-vector y^{n}. The constants $C_{n}=\sqrt{N}$ and we have the orthonormed eigenvectors y^{n}.

We obtain the matrix A and eigenvalues μ_{n} of matrix A for different order of approximation $O\left(h^{k}\right), k \geq 2$:

1. $k=2, h^{2} A=[2,-1,0, \cdots, 0,-1], h^{2} \mu_{n}=4 \sin ^{2}(\pi n / N)$,
2. $k=4, h^{2} A=\left[\frac{5}{2},-\frac{4}{3}, \frac{1}{12}, 0, \cdots, 0, \frac{1}{12},-\frac{4}{3}\right], h^{2} \mu_{n}=4\left(\sin ^{2}(\pi n / N)+\frac{1}{3} \sin ^{4}(\pi n / N)\right)$,
3. $k=6, h^{2} A=\left[\frac{49}{18},-\frac{3}{2}, \frac{3}{20},-\frac{1}{90}, 0, \cdots, 0,-\frac{1}{90}, \frac{3}{20},-\frac{3}{2}\right], h^{2} \mu_{n}=4\left(\sin ^{2}(\pi n / N)+\frac{1}{3} \sin ^{4}(\pi n / N)+\right.$ $\left.\frac{8}{45} \sin ^{6}(\pi n / N)\right)$,
4. $k=8, h^{2} A=\left[\frac{205}{72},-\frac{8}{5}, \frac{1}{5},-\frac{8}{315}, \frac{1}{560}, 0, \cdots, 0, \frac{1}{560},-\frac{8}{315}, \frac{1}{5},-\frac{8}{5}\right]$,
$h^{2} \mu_{n}=4\left(\sin ^{2}(\pi n / N)+\frac{1}{3} \sin ^{4}(\pi n / N)+\frac{8}{45} \sin ^{6}(\pi n / N)+\frac{4}{35} \sin ^{8}(\pi n / N)\right)$, etc.
Therefore the matrix A can be represented in the form $A=P D P^{*}$, where the column of the matrix P and the diagonal matrix D contains N orthonormed eigenvectors y^{n} and eigenvalues $\mu_{n}, n=\overline{1, N}$ correspondly. From $P^{*} P=E$ follows that $P^{-1}=P^{*}$, where E is the unit matrix. For solving the problems of the mathematical physics we compare these methods with the scheme with the exact spectrum, when in the matrix D elements are the first N eigenvalues of the continuous differential operator $\lambda_{n}=\left(\frac{2 n \pi}{L}\right)^{2}$.
[^0]
[^0]: ${ }^{1}$ This work is partially supported by the projects $2009 / 0223 / 1 \mathrm{DP} / 1.1 .1 .2 .0 / 09 /$ APIA/VIAA/008 of the European Social Fund and by the grant 09.1572 of the Latvian Council of Science.

