Abstracts of MMA2011, May 25–28, 2011, Sigulda, Latvia © 2011

NUMERICAL EXPERIMENTS OF SINGLE MODE GYROTRON EQUATIONS¹

JĀNIS CEPĪTIS^{1,2}, OLGERTS DUMBRAJS³, HARIJS KALIS^{1,2}, ANDREJS REINFELDS^{1,2} and DANA CONSTANTINESCU⁴

¹Department of Mathematics, University of Latvia

Zeļļu iela 8, Rīga, LV-1002, Latvia

²Institute of Mathematics and Computer Science of University of Latvia

Raiņa bulvāris 29, Rīga, LV-1459, Latvia

³Institute of Solid State Physics of University of Latvia

Ķengaraga iela 8, Rīga, LV-1063, Latvia

⁴Department of Applied Mathematics, University of Craiova

A.I.Cuza Street 13, Craiova 1100, (200585) Romania

E-mail: janis.cepitis@lu.lv, olgerts.dumbrajs@lu.lv, harijs.kalis@lu.lv E-mail: reinf@latnet.lv, dconsta@yahoo.com

The present work continues our recent investigations of the stationary problem of the single mode gyrotron equation [1] using the implicit finite difference schemes and the method of lines. We consider two versions of the gyrotron equation. The amplitude f(t, x) of the high frequency field in the gyrotron resonator and the transverse orbital momentum $p(T, x, \theta_0)$ of electrons can be

described by the following system of two complex differential equations (new version):

$$\begin{cases} \frac{\partial p}{\partial x} + i \left(\Delta + |p|^2 - 1 - g_b \right) p = i f(t, x) \\ \frac{\partial^2 f}{\partial x^2} - i (1 + \delta_\omega) \frac{\partial f}{\partial t} + (1 + 0.5(\delta_\omega + g_c)) g_d f = (1 + \delta_\omega) (1 + g_c)^2 I , \end{cases}$$
(1)

where $i = \sqrt{-1}$, $x \in [0, L]$ and $t \ge 0$ are the axial and time coordinates, L - the length of the interaction space, $\Delta, \delta_{\omega}, \theta_0 \in [0, 2\pi]$ - the real constants, I - the current, $g_b(x), g_c(x), g_d(x)$ - given real functions and $\langle p \rangle = \frac{1}{2\pi} \int_0^{2\pi} p \, d\theta_0$ averaged value of p. The system (1) is supplemented by the initial conditions $p(t, 0, \theta_0) = \exp(i\theta_0), f(0, x) = f_0(x)$, and by the boundary conditions in the gyrotron cavity

$$f(t,0) = 0, \quad \frac{\partial f(t,L)}{\partial x} = -i\gamma f(t,L),$$

where $f_0(x)$ is the given complex function, γ is a positive parameter.

REFERENCES

 J.Cepītis, H.Kalis and A. Reinfelds. Numerical investigations of single mode gyrotron equations. Mathematical Modelling and Analysis, 14 2:169-178, 2009.

¹This work is partially supported by the projects 2009/0223/1DP/1.1.2.0/09/APIA/VIAA/008 of the European Social Fund and by the grants 09.1220 and 09.1572 of the Latvian Council of Science.