ON SMOOTHING PROBLEMS UNDER ADDITIONAL RESTRICTIONS¹

SVETLANA ASMUSS^{1,3}, NATALJA BUDKINA^{2,3} and JURIS BREIDAKS¹

¹Department of Mathematics, University of Latvia
²Riga, LV-1002, Latvia
²Riga Technical University
Meža iela 1/4, Rīga, LV-1048, Latvia
³Institute of Mathematics and Computer Science of University of Latvia
Raiņa bulvāris 29, Rīga, LV-1459, Latvia

E-mail: svetlana.asmuss@lu.lv, budkinanat@gmail.com, juris.breidaks@csb.gov.lv

Let X, Y be Hilbert spaces and assume that linear operator $T: X \to Y$, linear functionals $l_j: X \to \mathbb{R}$, $j = 1, \ldots, m$, and $k_i: X \to \mathbb{R}$, $i = 1, \ldots, n$, are continuous, functionals $l_1, \ldots, l_{m-q}, k_1, \ldots, k_n$ are linear independent and

$$l_{m-q+j} = \sum_{i=1}^{n} \phi_{ji} k_i, \ j = 1, \dots, q.$$

For given vectors $u = (u_1, \ldots, u_{m-q})$ and $v = (v_1, \ldots, v_n)$, parameters $\varepsilon_i > 0$, $\omega_i > 0$, $i = 1, \ldots, n$, and matrices $\Omega = diag(\omega_i)_{i=1,\ldots,n}$, $\Phi = (\phi_{ji})_{j=1,\ldots,q}$, we consider two following conditional minimization problems:

PROBLEM 1. (the smoothing problem with obstacles)

$$\|Tx\| \longrightarrow \min_{\substack{x \in X, \\ A_1x = (u, \Phi v), \\ |(A_2x)_i - v_i| \le \varepsilon_i, \quad i = 1, \dots, n, }$$

PROBLEM 2. (the smoothing problem with weights)

$$||Tx||^2 + ||\Omega^{-1}(A_2x - v)||^2 \longrightarrow \min_{\substack{x \in X, \\ A_1x = (u, \Phi v)}}$$

Here the restrictions given by $A_1 = (l_1, \ldots, l_m)$ describe the interpolating conditions and the restrictions given by $A_2 = (k_1, \ldots, k_n)$ describe the smoothing conditions. This talk is devoted to the analysis of Problem 1 and Problem 2 in the case when some of functionals l_j , $j = 1, \ldots, m$, depend on k_i , $i = 1, \ldots, n$.

 $^{^1{\}rm This}$ work is partially supported by the projects $2009/0223/1{\rm DP}/1.1.2.0/09/{\rm APIA/VIAA/008}$ and $2009/0138/1{\rm DP}/1.1.2.1.2/09/{\rm IPIA/VIAA/004}$ of the European Social Fund and by the grant 09.1570 of the Latvian Council of Science.