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Introduction 

 

Goals and Objectives 

A major research goal has been establishing novel sufficient conditions for 

equivalence of systems of difference equations in a neighbourhood of invariant 

manifolds both in spaces of finite dimension and general Banach spaces. This 

contributes to the qualitative and quantitative research of application motivated 

systems of difference equations and continuous and discrete dynamical systems 

including time-scale systems. 

Among other research objectives was simplification and linearization in the 

neighbourhood of an invariant manifold of various kinds of difference equations 

(including trichotomic) in finite dimension spaces as well as in more arbitrary Banach 

spaces using Green mappings. Difference equations of such kind are obtained from 

irreversible partial differential equations of evolution widely using in modelling 

physical processes. The reduction principle developed by the group leader was to be 

applied. Further development of stability theory and equivalence theory of dynamic 

systems was planned in the context of time scales, which constitute a theoretical basis 

for unification of difference equations and differential equations. The results obtained 

by the Riga school of nonlinear boundary value problems for differential equations 

might thus be transferred to the field of difference equations. Work on problems of 

difference equations should help identify fertile research topics for the young 

scientists. 

 

A detailed outline of the study 

 

1. Research on Difference Equations and Associated Dynamic Systems. 

 

Because of the prospective applications become topical Difference equation 

studies. Based on the internationally accepted qualitative theory of differential 

equations different aspects of the project which aims to find new sets of sufficient 

conditions for the system of equations Difference invariant varieties around the final 

dimensions, it would be equivalent to the Banach space, develop Difference and 

associated dynamical systems theory solution stability and dynamic of equivalence 

theory, as well as qualitative and quantitative research in various aspects of 

continuous and discrete dynamic systems including the "timeline" ("time scale") 

system, which combines a unified theory of differential equations and difference 

equations. 

Stability theory and the principle of reduction commitments actuality 

discussed in [10, 12] and presentations at conferences Valmiera (2012) and Dresden 

(Germany) (2010). If the subsystem is a key part and the corresponding linear matrix 

eigenvalue real parts are positive, but non-linear part satisfies the Lipchitz conditions 

small enough Lipchitz constant, then the trivial solution stability study was reduced to 



a lower dimension analogue system, which the linear part of the matrix eigenvalue 

real parts are equal to zero, but the nonlinear part satisfies the Lipchitz conditions of 

low Lipchitz constant. In order to prove first prove the so-called centre manifold 

existence theorem. To prove this claim in waste solution to the integral representation 

of the so-called constant variation formula generalization. The following proves that 

every output system solution tended to one particular solution to the centre manifold, 

the so-called asymptotic phase-type theorem. In this demonstration Functional use of 

specific methods and evaluation techniques. At times, it is noted that the centre-type 

manifolds and the asymptotic phase property can be shown to the more general terms, 

the so-called separation conditions to be looked at in detail in the given presentations. 

Based on the above theorems can be proved the principle of reducing stability theory, 

the system outputs the trivial solution is stable, asymptotically stable and unstable 

Lyapunov sense if and only if the reduced equation trivial solution is stable, 

asymptotically stable or unstable Lyapunov sense. Next we consider the more general 

case, i.e. the main part of the system is essential to the so-called nonlinear Florio-

Seibert problems, paying special attention to equations with homogeneous principal 

part at a sufficiently general conditions show closed, asymptotically stable invariant 

sets (attractors) Having used the existence of global Lyapunov-Krasovsky functions. 

At times, it is noted that the invariant set is not necessarily invariant variety. Find 

sufficient conditions through Ļyapunov-Krasovsky function at which the invariant set 

is Lipchitz variety. Next find other sufficient conditions for the existence of invariant 

varieties. Is dealt one parameter family of mutually commuting operators. It turns out 

that this family can prove the existence of a common fixed point. The proof is based 

on the original and Sauder-Lerje theorems principles. In general, not fulfilled 

asymptotic phase characteristic of homogeneous equations to the main part. This is 

illustrated by a specific example. Are found sufficient conditions of a fundamental 

nonlinear systems trivial solution stability studies of reduced system is equivalent to 

the trivial solution existence. 

Works [16,19,22,24] and presentations at conferences Ariel (Israel) (2010), 

Moscow (Petrovsky seminar) (2011), Loughborough (UK EQUADIFF) (2011) and 

Batumi (Georgia) (2011) studied the so-called impulsive dynamical systems in 

general Banach functional space, including the question of Lipchitz smooth invariant 

varieties of the existence of a solution to the asymptotic solution to the exponential 

phase and the desire for a stable invariant variety, as well as reducing the principles of 

stability theory, the dynamic equivalence theory. Note that the impulsive dynamical 

systems characteristic is that they are often unedged. So we look at the general 

impulsive dynamical systems Banach space separating the linear and nonlinear part., 

As well as the distribution of the dynamic system and jump conditions 
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Assuming that the linear part of the evolution operator satisfies the integral of 

the separation conditions and non-linear conditions Lipchitz members meet with a 

small constant, proving the existence of Lipchitz separable manifold. The following 



shows that solutions to satisfy some type integrated inequalities. Based on the results 

and viewing the specific type of functional integral, proving asymptotic properties of 

the phase. All this allows to formulate and prove the principle of reducing the integral 

version. Impulsive system trivial solution is integrally stable integral asymptotically 

stable or unstable integral if and only if the system of reduced impulse 
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trivial solution is integrally stable integral asymptotically stable or unstable integral. 

In case invariant variety is exponentially asymptotically stable, the more accurate the 

result is correct, namely the trivial solution is stable, asymptotically stable or unstable 

as the output of dynamic systems, the Normalized dynamic system. 

The major studies of various types, including the type of swing trihotomisk 

impulsive dynamical systems to simplify and linearising around a stationary point as 

the final dimensions of the Banach space using Green's type of imagery works [21.23] 

and presentations at conferences Ponta Delgada (Portugal) (2011) , Tbilisi (Georgia) 

(2011). Are found sufficient conditions for impulsive dynamical systems 
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and partially linearized impulsive dynamic system 
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be locally and globally and dynamically equivalent. In this type of Difference 

Equations leading evolutionary type of partial differential equations, which are widely 

used in modelling of physical processes. To find sufficient conditions for impulsive 

dynamical systems dynamic equivalence is assumed that the linear part of the 



evolution operator satisfies the conditions and integrals separable members meet 

Lipchitz nonlinear terms to a small constant. 

Works [3,15,34] and reports in Riga (2010) and Barcelona (2012) looks at 

Banach space without cropping Difference equations Autonomous 

 

)).(),(()())(()1(

)),(),(())(()1(

tptxtptxAtp

tptxGtxgtx




 

 

and supervised the event of such a system have invariant varieties neighbourhood. 

Noting that the two Difference equation systems are equivalent if there exists a 

homeomorphism (between the continuous and bijective representation) in a single 

system orbit Difference represents a Difference other systems in orbit and vice versa. 

The given approach allows a complex system of equations Difference qualitative 

research Difference replaced by simpler system of equations, often with smaller 

dimension of research. A variety of real problems in practice and leads to the 

reversible and the unedged Difference equation systems, the latter from a 

mathematical point of view is more complex and interesting at the same time. Were 

studied in the simplest unedged Difference equations, i. e such that the linear 

approximation is asymptotically stable. We found sufficient conditions, using 

Difference system right conditions for the given system there is a smooth variety 

Lipchitz invariant )( xup   - Centre for variety at a sufficiently small perturbations. 

Revealed a stationary point of existence theorems, the chosen functional space. Next 

on the basis of these results were found to be sufficient (close to the necessary 

conditions) for a given Difference equations equivalent to a simplified system. 
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First, note that the resulting system's first Difference subsystem does not contain the 

variable p, while the second subsystem is linear to p. The proof is long enough and the 

theorem is based on the whole series. Successfully selecting the desired functional 

equations assistant, often importation of additional variables, as well as finding a 

suitable functional spaces was demonstrated adequate homeomorphism existence. The 

result obtained significantly generalizes over the world in the past mathematical 

literature results. The given paper is being prepared for publication deployed. 

The results are summarized in "Conjugacy of discrete semidynamical systems 

in the neighbourhood of invariant manifold” [3], which was adopted for publication 

"Springer Proceedings in Mathematics." 

  

2. Research on Rational Difference Equations 

 

During the reporting period were investigated second order rational difference 

equations of the form: 
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where the parameters CBA ,,,,,   are nonnegative real numbers and the initial 

conditions 1x  and 0x  are arbitrary nonnegative real numbers such that 

01  nn CxBxA  for all natural values of n.  



The most important book on this kind of equations is Dynamics of Second Order 

Rational Difference Equations with open problems and conjectures (M.R.S. 

Kulenovic, G.Ladas, Chapman and Hall/CRC, Boca Raton, Fla, USA, 2002). It was 

used to study the known results about the behavior of solutions of the difference 

equation (1), for example, local and global stability, existence of periodic solutions, 

convergence of solutions, as well as to learn the main methods that are used in the 

quantitative research of the difference equations (methods of mathematical analysis – 

convergence of solutions, continuity; methods of mathematical logics – formulations 

of decisions and hypothesis; methods of theory of difference equations – different 

proofs for stability of solutions or statements that solution is unstable, ways of finding 

cycles and periodic solutions; numerical methods – hypothesis formulation based on 

numerical experiments with MS EXCEL and MATHCAD). 

The before mentioned book contains many so called Open problems (problems 

that have not been solved) and conjectures, the main attention have been focused on 

the following open problem: 

It is known that every positive solution of each of three equations  
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converges to a solution with (not necessarily prime) period-two: 

...,,,,...,  . 

In each case, determine   and   in terms of the initial conditions 1x  and 

0x . Conversely, if ...,,,,...,   is a period-two solution for one of the 

equations (2), (3) or (4), determine all initial conditions 

);0();0(),( 01  xx  for which the solution 
 1}{ nnx  converges to 

this period-two solution. 

On the results of the research have been prepared reports and presented in conferences 

[17], [25], [28], [30], [33], also a publication [4] have been prepared and submitted. 

During the reporting period have been collected and analyzed different 

publications about the latest results in the theory of difference equations. 

Part of the seminars (direction “Technomathematics actual problems”) of the 

doctoral school “Research, modelling and mathematical methodology improvement 

for atomic and continuous media physical processes” of the University of Latvia have 

been devoted to the modeling and description of neural networks using difference 

equations. During the seminars have been analyzed a paper by Z.Zhou Periodic orbits 

on discrete dynamical systems, Computers and Mathematics with Applications, 45: 

1155-1161, 2003, in which a single neuron model ...,1,0),(1  nxgxx nnn   

with a simple signal function 

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x

x
xg  have been investigated. On a 

basis of this paper have been prepared and submitted a publication „Periodic Orbits of 

Single Neuron Models with Internal Decay Rate 10   ” (coauthors A. Aņisimova, 

I. Bula), where signal function is in the following form 
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3. Obtaining of a priori estimates for solutions of self-similar differential 

equations and their systems in order to ascertain the solvability of boundary 

value problems  
 

 The attempt to carry over difference or even though time scale equations the 

classical conditions which ensure a priori estimates of solutions and their derivatives 

of second order differential equations in explicit form for boundary value problems in 

accordance with aims of project was made in the report [14]. Mentioned classical 

conditions for the solutions of second order differential equations or their systems in 

explicit form are possible to formulate in the terms of so-called lower and upper 

functions. On the other hand a priori estimates for derivatives of solutions, having a 

priori estimates, ensure conditions of Schrader’s or Nagumo’s type or their 

generalizations. Generalizations of Nagumo’s type conditions often are possible to 

express using one-sided estimates of differential equations right-hand sides. 

Conditions which guarantee a priori estimates for derivatives of solutions, having a 

priori estimates, in some situations similarly like using lower and upper functions are 

possible to express in the form of differential inequalities. Obtained a priori estimates 

of solutions and their derivatives of boundary value problem allow determining the 

solvability of boundary value problem, moreover various nonintersecting a priori 

estimates of solutions make possible to evaluate the number of boundary value 

solutions. It must be added that a priori estimates implies the stability of solutions, in 

addition the existence of different unstable solutions also are feasible.  

 Employment of the lower and upper functions in order to ascertain a priori 

estimates of solutions of difference and time scale equations are comparatively 

successfully approved in literature. It is not true with regard to conditions which 

ensure a priori estimates for analogues of solution, which has a priori estimate, 

derivative. The conditions formulated for this aim in the report [14] characterize 

certain formalism and nonconstructivity caused on this matter. There underlined 

exclusions on the behaviour of solutions for equation which is included in the 

boundary value problem. It must be stated taking into account the behaviour of right-

hand site of equation, but this yet is unsolved task. 

 In parallel way with investigations in order to obtain conditions for a priori 

estimates of difference and time scale equations was extended the investigation of 

self-similar equations obtaining and solvability of their boundary value problems. 

These investigations were communicated in the reports [9], [13], [20], [37].    

 

 The example. The hydrodynamic flow in the boundary layer of rectangular 

channel is described by the system of partial differential equations 
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with the boundary conditions 

 

 

 

 

 

 

 

Using similarity transformation 

 

 

 

 

 

 

 

 

we obtain the boundary value problem for the self-similar differential equation system 

 

 

 

 

 

 

 

 

Let us note, that the boundary conditions allow the flow sliding along wall of channel  

)0(   and so one of the boundary conditions become nonclassical. 

If we observe the previous boundary layer system of partial differential 

equations without the equation of temperature and introduce the flux function   we 

obtain 
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Using self-similar variables we transform this equation in the form 
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In order to obtain the self-similar ordinary differential equation must be fulfilled the 

following expressions  

 

 

So, after differentiation this self-similar equation obtains the following view 

 

 

 

Considering intrinsic heat convection along thin heated plate which is embedded in 

the porous medium one obtains the boundary value problem of de la Vallee-Poussin 

type for the self-similar equation (Z.Belhachmi et al, On the Family of Differential 

Equations for Boundary Layer Approximations in Porous Media. European Journal of 

Applied Mathematics, 12, 2001, 513-528) 

 

 

 

 

 

Physical interest cause solutions of this problem which satisfies the estimates 

 

 

In general we can consider the differential equation 

 

 

with continuous coefficients. Considered boundary value problem for this equation 

has exactly one solution with physical meaning, if 

 

 

 

on the other hand there are not solutions of this problem in the case 

 

 

 

Remaining are two cases 

 

 

 

 

 

 

 

At the first of cases the boundary value problem has not solution with physical 

meaning, but in the second of these cases the boundary value problem has at least one 

solution with physical meaning.  

 

4. Hyperbolic Heat Conduction Equation and its Applications 

 

S. Blomkalna began to work in the project as a participant in leading 

researcher's A. Buikis group. She started PhD studies in October, 2011 with J. Cepītis 
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as a thesis adviser and A. Buikis as a consultant. Significant part of her research, 

cooperating with A. Buikis, was multiple model development for intensive steel 

quenching process and analytical-numerical methods for their solutions. Particular 

attention was paid to inverse problems, since it is experimentally impossible to 

determine initial heat flux. Hyperbolic Heat Conduction equation (HHCE) has 

promising properties for better mathematical description of metallurgical processes. 

This work is a part of a series of studies devoted to Intensive Quenching models. 

Results of obtained results are presented in conference thesis [29, 35] and paper [6].  

The second goal was to find, identify, analyse and examine other applications 

of HHCE. 

The review identifies material heating, using ultra short impulse lasers as one 

of the most popular fields where HHCE is used and intensively studied. There are 

several studies about processes in thin gold film. Various impulse functions, different 

sample shapes and multilayered objects are investigated. Mathematical models 

include classic (parabolic) heat conduction equation, hyperbolic equation and dual 

phase lag equation in one, two and three dimensions. Several methods of solving 

problems are proposed and analysed; stability analysis is done for 1D case. HHCE can 

be successfully applied to describe laser heating of biological materials - human tissue 

in liver, skin, kidney etc. in surgical procedures, usually with short, localized heat 

source. There are reports where HHCE also suits for forest fire modelling, virus 

infection spread and pollution diffusion in harbours. 

 

5. Electron flow modelling gyrotrons. 

 

Researchers gathered a group of recognized experience in nonlinear 

Schrödinger-type equations, qualitative and numerical solution to simulate electron 

motion gyrotrons required studies and calculations of thermo-nuclear reaction control 

a new type of nuclear reactors. 

The mathematical model was reduced to nonlinear complex Schrödinger-type 

partial differential equations system that describes one or more electrons RF field 

amplitude ),( txf  oscillations in gyrotrons and transversal orbital momentum ),( txp  

depending on the time t  and from x  at the segment ],0[ L . 

High-frequency RF field amplitude ),( txf  in transversal resonator and the 

electron orbital momentum ),( txp  with parameters   )20(    can be described 

by a complex system of differential equations 
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where i  is the imaginary unit, Lx 0  and 
f

tt 0  are the normalized axial and 

temporal coordinates, L  is the exit from the interactive space, 
f

t  is the final time,   

is the cyclotron resonance mismatch, 


  is a frequency mismatch, I  is the 

dimensionless beam current parameter, )( xg
b

, )( xg
c

, )( xg
d

 are given empirical 

functions,  p  is averaged value of p . 



The system has to be supplemented by the initial condition 
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is the electron perpendicular efficiency which describes the transfer of the electron 

orbital momentum from the beam of RF. 

The equations takes into account the dependence of the electron relativistic 

factor on the axial coordinate and dependence of the magnetic field on the axial 

coordinate: electron relative factors in relation to the axial axis and the dependence of 

the magnetic field. Usually these dependencies are weak and are ignored. The 

difficulties arise in solving the nonstationary problem for large time interval with the 

oscillating complex initial function.  

We found the law of conservation of power  
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Gyrotron equation solution structure is very complicated. To different 

parameter values significantly changes the picture of the phase space picture. We find 

the topology of different kinds of oscillations of a gyrotron in the I  plane (see 

Figure 1). White regions correspond to stationary oscillations, gray regions 

correspond to automodulation, and dark regions to chaotic oscillations. The contours 

of constant efficiency are shown by the dashed curves. The point of the maximum 

efficiency is marked by the cross.  

 



 
 

Figure 1 

 

It turned out that the approximation space with central differences (DS-2) and 

the implicit of difference scheme is unstable for modified version of gyrotron 

equation, because the solution by reducing the time step was oscillating in time as 

well as space. To find the solution with the physics method was used straight lines, 

reducing the partial differential equations of the system of ordinary differential 

equations and solving them with the MATLAB solver, where the time step is selected 

automatically according to the given precision. Numerical calculations showed that 

the stationary solution f  to fluctuations in the space is really noticeable, while the 

time is not (see Figure 2). 

In collaboration with physicists in the analysis of single-mode equations for 

gyrotrons, found that at small time steps oscillations with increasing amplitude of the 

electron source is relativistic factor and dependence on the magnetic field (see Figure 

2). 



 
 

Figure 2 

 

The results are given in the papers [1, 2] at SCI Expanded journals 

"Mathematical Modelling and Analysis" and "Nonlinear Analysis: Modelling and 

Control" and presented [18] at the conference in Sigulda (2011). 

 

6. Nonlinear plasma flow perturbations 

 

Larger scale plasma instabilities not leading to an immediate termination of a 

discharge often result in periodic nonlinear perturbations of the plasma. A minimal 

possible physical model has been formulated for description of the system with drive 

and relaxation processes which have very different time scales. The model is based on 

two equations: the first being responsible for the relaxation dynamics (MHD force 

balance) and the second for the drive (energy conservation). 
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      (1)  

The first equation is the equation of instability dynamics. It describes fast 

events occurring in a system due to instability growth. It is natural to assume that the 

amplitude of the displacement of the magnetic field   corresponding to this 

instability is the main characteristic variable of the equation. Here p  is the plasma 

pressure gradient and   is dissipation. 

The second equation is the equation for the pressure gradient. It describes the 

power balance. The h  represents the normalized power input into the system and is 

responsible for inducing the burst. The   is the characteristic relation between the 

two heat diffusion coefficients 



For a convenient mathematical analysis this model can be represented as an 

autonomous system of three parameter-dependent first order ordinary differential 

autonomous non-linear equations 

 

 

 
2

1
d x

z y x
d t

d y
x

d t

d z
h z y z

d t






   











   




        (2) 

Differential system (2) contains the square and cubic nonlinearity. For the first 

time differential equations (1) published the Max Planck Institute for Plasma Physics 

researchers D.Constantinescu, O.Dumbrajs, V.Igochine, K. Lackner, R.Meyer-

Spasche, H.Zohm in the paper A low-dimensional model system for quasi-Periodic 

plasma perturbations, Physics of Plasma 18 (2011), No.6. 

System obtained is somewhat similar to the Lorentz equation system, which 

has a very complicated phase picture. Firstly, the system is dissipative, i.e. 
2

)( yXdiv   . This means that the flow generated by the system of equations 

compressed volumes. But this in turn means that there are no invariant torus of 

trajectory formed by a quasi-periodic solution. Other hand, there are attractors and 

trajectories asymptotically approached them. The second characteristic is that the 

system is symmetric with respect to the z  axis. 

Differential equations system (2) has three fixed points ),,0,0(
1

hP   

)1,1,0(
2

 hP  and. )1,1,0(
2

 hP . Stationary point 
1

P is asymptotically stable, 

if 10  h . If 1h  then the point 
1

P  is a saddle point with a two-dimensional stable 

and one-dimensional unstable manifold. While the symmetrical stationary points 
2

P

and 
3

P  are asymptotically stable if )1(2)(  hhh  and unstable if 

)1(2)(  hhh   with one-dimensional stable and unstable two-dimensional 

unstable manifold. 

To prove this result we find Jacobi matrix of stationary points, find and 

characteristic polynomials and using the Routh-Hurwitz criterion determine the sign 

of the real part of the eigenvalues. 

Numerical experiments show that the system of differential equations have 

different type of bifurcation. Having used the analytical method other hand, may find 

that the pitchfork bifurcation in stationary point 
1

P , and the Andronov-Hopf 

bifurcation in points 
2

P and 
3

P . Specifically, using the centre manifold theory with the 

reduction principles can be stated that the stationary point 
1

P  is a locally 

asymptotically stable if 1h and supercritical pitchfork bifurcation point. While the 

stationary points 
2

P and 
3

P  are supercritical or subcritical Andronov-Hopf bifurcation 

points according to the first Ļyapunov coefficient signs. This fixed point is 

surrounded by small stable or unstable limit cycles, corresponding to periodic 

solutions to them. If 1h  then the stationary point is globally asymptotically stable. 



Numerical experiments show that the system of differential equations (2) with 

the parameters 845.0 , 0845.0 , 7.1h and initial values 

)4.1,1.4,1.0(),,(
000

zyx  have a strange attractors. See Figure 3. 

 

 
Figure 3 

 

The numerical results allow distinguish five dynamical zones of oscillations: 

1. damped oscillations 

2. simple periodic oscillations 

3. double periodic oscillations 

4. existence of chaotic oscillations 

5. sawtooth type oscillations with a long rise time and a short crash time. See 

Figure 4. 

 



 
 

                                                                   Figure-4 

 

We studied the phase portrait of given system for different parameter values. 

The results are given in the works [26, 31, 38] and presented at conferences in Jelgava 

(2012), Tallinn (2012) and Novacellā (Italy) (2012). In addition, there was developed 

thesis (S.Avdejevs) (2011). 

 

7. Research on fiber suspension rheology 

 

Another part of the project was devoted to research on fiber suspension 

rheology. Contributions have been made to mathematical modeling, qualitative 

analysis and application-oriented numerics for short fiber suspension flows. The 

principal directions of our work include modeling the wall effect on fiber orientation; 

analysis of stability of pressure driven fiber suspension flow in a domain between 

parallel plates; the proper generalized decomposition (PGD) method as an universal 

technique for solving PDEs in high dimensional domains, with the particular 

application to the kinetic equations appearing in rheology. 

Modeling the wall effect. It is well known that fiber dynamics near the wall 

are different from the dynamics in the bulk of suspension due to various effects that 

include long and short range interactions mediated by the fluid phase as well as direct 

mechanical contacts between the fiber and the wall. The current state-of-art models 

used in simulations of industrial processes either ignore the wall effect completely or 

employ quasi 2D simulations of fiber orientation in regions near the wall. The high 

number density of fibers in typical applications in, e.g., fiber-reinforced 

thermoplastics effectively prohibit executing direct microscale simulations, thus 

averaged mesoscale models are called for. We have developed novel microscale and 

mesoscale models based on simplifying assumptions on the nature of fiber-wall 

interactions. 



The dynamics of a suspended fiber in microscale can be described by the 

Jeffery's equation. In close proximity to a wall Jeffery's model may predict 

geometrically impossible orientation states in which the fiber would penetrate the 

rigid wall. We have derived a generalization of Jeffery's equation that describes the 

time evolution of the unit vector p representing the orientation of the central axis of 

the fiber in the form 

  
Next to the orientation vector p this model contains another parameter d, 

which measures the distance of the centre of mass of the fiber to the wall. This model 

presumes that the fiber evolves according to Jeffery's equation in the absence of 

contact and slides along the wall in case of contact. Starting from this equation, a 

range of more complicated models has been derived.  

The effects of lubrication prevent direct mechanical contacts between the fiber 

and the wall at low concentration regime. In a nutshell, the lubrication effect goes as 

follows: as a part of the fiber approaches the wall, some mass of fluid must be 

displaced, thus inducing an effective repulsive force acting on that part of the fiber 

depending on the relative velocity. The contact condition is replaced by additional 

term in Jeffery's equation.  

The fiber concentration in technical suspensions is high enough to make fiber-

fiber interactions count. The classical Folgar-Tucker and related models account of 

this complicated process by introducing orientational diffusion. In the microscale this 

leads to stochastic ODE – a Langevine equation. Additionally to the orientational 

diffusion we add a diffusion of the fiber-wall distance parameter due to random inter-

fiber interactions in our model. 

Moreover, the structure of the generalized Jeffery's equation allows to 

incorporate other effects, such as mobility coefficients depending on the fiber shape. 

Extensive numerical simulations have been performed for local flow fields of 

significance for practical applications using different variations of the extended 

microscale model. The solution complies with the geometrical restrictions in near-

wall regions (which are typically violated using pure Folgar-Tucker model) and give 

good qualitative agreement with the published orientation states observed 

experimentally. The group of Soderberg has published experimental results of fiber 

orientation for different surface roughness, a parameter that strongly affects the fiber-

wall collisions. Further work on our model is needed to improve the quantitative 

agreement with these experimental results. 

Mesoscale (kinetic scale) models are derived with respect to a distribution 

function defined on the Cartesian product of the time domain, space domain and the 

phase space of orientational and other additional state variables. For instance, the 

Folgar-Tucker model is the Fokker-Planck equation derived from Jeffery's equation 

with the assumption of isotropic orientational diffusion with intensity proportional to 

the local macroscopic shear rate. Two strategies to incorporate wall effect in 

mesoscale models are as follows: deriving a new Fokker-Planck equation from a 

suitable microscale model, or to modify the Folgar-Tucker equation 

phenomenologically so that to avoid non physical orientation states near the wall. 

Since the Folgar-Tucker and related models are expressed in terms of low-order 

moments of the distribution function instead of the function itself, the exact state of 

orientation of single fibers is not known, and nor is the exact moment of fiber-wall 

contact. 



To reach that end, one checks whether the orientation state predicted by a 

classical model (not including wall effects) violates the geometrical restrictions. If so, 

a projection step is made to phenomenologically represent the sliding of fibers along 

the wall in case of contact. The direction of the projection is determined by 

interpolating between two directions, the first being exact if the exact distribution 

function is a linear combination of Dirac delta-distributions with support on the 

directions of eigenvectors of the orientation tensors, and the other being exact if the 

exact distribution is identical to its up to second order expansion in spherical 

harmonics. The interpolating coefficients depend on the determinant of the orientation 

tensor as a measure of planarity of the distribution in a similar way as the hybrid 

closure approximation is constructed. The model has been tested by implementation 

in the framework of CoRheoS solver developed at Fraunhofer ITWM, Kaiserslautern, 

Germany. Good agreement with experimental results is achieved. 

The generalized Jeffery equation leads to a completely different kind of 

Fokker-Planck equation than in the Folgar-Tucker case, namely, it is a PDE on a 

manifold with an edge parametrized by the states of fibers that are in contact with the 

wall. Depending on the collision model, the solutions can be true distributions, i.e., 

the edge (a set of zero measure) carry positive “mass” of orientation distribution. 

Various numerical techniques for solving advection-diffusion equations on 

(submanifolds of) sphere have been studied. For instance, solutions of linear 

equations can be sought as series of spherical harmonics. The coefficients determining 

the advection velocity being polynomial, the elliptic operator on the left-hand side of 

the PDE maps the space of finite linear combinations of spherical harmonics to itself, 

and the coefficients can be found by recursive application of certain transformation 

rules. This not only leads to efficient numerical methods, but also provides direct 

means to estimate the error of moment expansion of the Fokker-Planck equation and 

application of a certain closure model.  

Stability of channel flows. Linear stability analysis of the channel flow of a 

fiber suspension in a channel domain using the Folgar-Tucker model has been 

performed by Lin Jianzhong et. al. We have extended the analysis to the FTMS 

model, a generalization of Folgar-Tucker model for highly concentrated suspensions. 

The orientation of fiber orientation tensor under the influence of a given external 

velocity field is given by the equations 

 
We use the standard notation for Folgar-Tucker model. The matrix M is a linear 

combination of the global velocity gradient and its transpose, and the velocity is 

governed by the incompressible generalized Navier-Stokes 

 

 
Pressure driven channel flow with isotropic fiber orientation state at the inlet 

exhibits slowly decaying transient effects connected with the fishbone pattern of fiber 

orientation, i.e., in certain parts of the channel the preferred orientation of the fibers is 

oblique to the global velocity field, thus strongly increasing the local value of 

effective viscosity. However, further downstream a stationary state is reached, 

corresponding to parabolic velocity profile (Poiseulle flow). Small perturbations of 

the stationary flow induce certain transient effects. The time behaviour of these 

transients is the object of study of stability analysis. 



By decomposing the perturbation in Fourier components and linearizing the 

equations one obtains a boundary value problem for a fourth-order ODE with respect 

to the stream function of each component of the perturbation depending on the wave-

number and direction of travel of the harmonic perturbation. The rate of decay or 

growth of the component enters the equation as a complex generalized eigenvalue. 

The result of the analysis may be interpreted as a generalization of Orr-Sommerfeld 

problem: find complex values of the parameter c, for which the boundary value 

problem with homogeneous Dirichlet and Neumann boundary conditions for 

 
admits a non-trivial solution. The stability of the flow depends on the sign of the 

imaginary part of the generalized eigenvalues c. 

The problem is non-linear with respect to c and must be solved for multiple 

sets of parameters, so efficient numerical methods are required. Several numerical 

strategies have been tested. The best results were obtained by either using the built-in 

solver 'bvp4c' or implementing a finite difference method for the linearized equation 

in a Chebysheff grid. 

Curves of neutral stability of the flow have been computed for various sets of 

physically relevant values of the parameters have been obtained showing the stability 

regions in the plane of wave number of the perturbation vs Reynolds number of the 

flow. Our results confirm the experimental data in demonstrating that the presence of 

fibers increases the stability region of the channel flow. 

Applications of PGD method. PGD (proper generalized decomposition) 

method for numerically solving multi-dimensional PDEs on tensor product 

geometries is rapidly growing in popularity in the recent years. In sharp contrast to 

conventional methods (such as finite element or finite volume) where the number of 

degrees of freedom increases exponentionally with the dimension of space, the PGD 

method often exhibits only a linear growth of number of degrees of freedom with 

dimension of the space. Among the applications of this method is the Fokker-Planck 

equations in rheology. Depending on the details of modelling, these equations can be 

formulated on phase spaces of arbitrary high dimension, where exceeding 100 

dimensions is by no means an exception. The PGD method is the only feasible way to 

solve such equations in terms of computational costs and memory requirements. 

The numerical solution is sought as the sum of products of single argument 

functions: 

 
where the basis functions are computed recursively. Plugging the ansatz into the 

equation, multiplying by a test function and integrating over all coordinates but one, a 

weak form for an equation with respect to a basis function is obtained. It should be 

noted that the multiple integral can be computed as the product of 1D integrals for 

functions admitting this kind of representation. The n-D PDE is solved by solving 

multiple nonlinear ODEs. Another advantage of the PGD method is the ability to 

cover a range of values of multiple parameters.  

The first step to apply PGD method for the equations of suspension rheology 

has been studies of simpler equations such as Laplace, heat transfer and wave 

equations. Several strategies of implementation have been tried out. The influence of 

the choice of initial guess on the rate of convergence of the inner iterations has been 

studied for different kinds of equations and other data (such as source functions etc). 



The equations of rheology are solved on tensor product geometries involving unit 

spheres. The parametrization of the sphere using spherical coordinates transforms 

maps the sphere to a rectangular domain allowing a direct application of the PGD 

method. Experimental versions of codes for application of PGD method to PDEs on 

tensor product of spheres have been developed. The work on this part of project will 

be continued. 

Other topics. The qualitative properties of equations of fiber suspension flows 

such as existence, uniqueness and stability in Bochner spaces, have been studied using 

methods of functional analysis. By improving the formulation of an inequality and 

simplifying the proof, a theorem of existence and uniqueness of a weak solution of the 

system of mesoscale rheological equations has been slightly generalized. The 

demands on the source functions have been relaxed from a polynomial growth to a 

condition on the smoothness. 
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