
MATHEMATICAL ANALYSIS, MODELING AND

OPTIMIZATION OF COMPLEX HEAT TRANSFER

PROCESSES

Dr. Uldis Raitums, Dr. Kārlis Birģelis

Goals of research

To develop and investigate mathematical properties of algorithms for numerical

optimization of heat transfer processes in nonlinear systems with nonlocal boundary

conditions.

Planned tasks and activities

The main research activities in this project we have planned to focus on investigation

of special class of optimal control problems, applied to optimize complex physical

systems, where heat transfer occurs simultaneously in different ways – due to heat

conduction, convection and heat radiation propagation, Typically, problems of this

class consist of two parts:

1. A nonlinear system of partial differential and integral equations, which

describes dependence of temperature field as state variable from other control

parameters;

2. A cost functional, against which optimization is carried out.

All research activities we plan to divide into two different stages:

1. At first stage we planned to make all necessary theoretical analysis of the

problem in order to obtain auxiliary results, which could be used at second

stage of research activities (for example, finding of an algorithm how to

construct a minimizing sequence of controls, or finding of a formula for

calculation of the gradient of the cost functional). As it is expected, obtaining

of these theoretical results will not be easy due to nonlinear and nonlocal

dependence of the state and control parameters in the state equation.

2. At second stage we planned to develop numerical methods and apply them for

simple test problems. As it is expected, that here we will not be able to use

standard numerical methods, but we will need to develop special methods used

only for this case.

1.Problem formulation

To optimize heat transfer processes in complicated physical systems, where various

physical phenomena simultaneously occur – heat conduction and convection, heat

radiation propagation, we can use standard optimization techniques.

Typically, mathematical formalization for the given class of problems leads to the

following type of optimal control problems:

{
 ()

 ()

 (1)

Here denotes a state parameter, – a control parameter, – a set of admissible

controls, () - a cost functional, which “measures” optimality of a freely chosen

parameter pair (), but () - a state equation, which defines relationship

between state and control parameters.

In order to investigate mathematical properties and derive numerical methods for

solving of the given class of problems about modeling and optimization of

complicated heat transfer processes in physical systems, we chose as model a real

world problem from glass fabric industry about temperature field optimization in high

temperature furnaces (see paper of A.Buikis and A.D.Fitt [5]).

Let the furnace has the following design - it consists of simple cylindrical heater

wrapped around constantly moving glass fabric sheet (see Fig. 1). Let ()
() () is a part of the fabric lying directly inside the furnace. The

inflow boundary { } () () we denote by and outflow boundary
{ } () () by . A volume of air surrounding both fabric and heater

let us denote by . The boundary of this domain splits into three disjoint parts

 , , , where is fabric-air interface, is heater-air interface and ir

remainder of the domain boundary (marked with dotted line in Fig. 1).

 , cross section , cross section

Figure 1. Geometry of the furnace.

Let , denotes outward normal to , , respectively. Let us also denote the

sets: ,
 { },

 {
 }, where { | | } is unit sphere. If is a function defined on ,

where is some domain, then by () we denote directional derivative of this

function in the direction .

Due to different physical characteristics of air and fabric there will be very different

heat transfer processes in each of the components of multi-domain system , .
Since fabric is almost opaque for heat radiation, then heat conduction and convection

(due to fabric drift) will prevail over other heat transfer forms in . At the same time,

since air is transparent for heat radiation and working temperature of furnace is high

enough (about 1100K) to produce significant radiative heat flux through air-solid

interface then radiative heat transfer will dominate over other heat processes in .
Since heat conduction and convection prevail in then for temperature field ()

in this domain we will have the following equation:

 on (2)

To describe radiative heat transfer in we can use models proposed in [2], [8]. If we

assume that is filled with transparent and nonparticipating medium and emits,

absorbs and reflects heat radiation like gray surface, then at thermal equilibrium for

heat radiation intensity () (measures photon flux intensity at point traveling

into direction) in and it traces (), () on the sets , ,

respectively, we will have the following system:

() (3)

and

 ()

()

 ()(

) , (4)

where () and () are emissivity and temperature fields on defined as

 () {

 () {

 ()

 ()

For total heat flux on the fabric-air interface we will have the following equation

 ()(

) ().

 (5)

The first two terms in right hand side of this equation describe radiative part of total

flux through , whereas the last term describes heat flux determined by Newton type

heat exchange between fabric and air (having fixed temperature () on). In

addition, let us assume that

{

 (6)

for some fixed as element of
 ().

To fulfill a task and optimize steady state temperature field of the fabric sheet (),

we choose some target temperature profile () on and define a cost functional

 ()
()

 ,

 (7)

where () is some regularization parameter (usually it has value in range

from to). Minimization of this functional is equivalent to force real

temperature be as close as possible to the profile . At the same time we must take

into account that is determined by (2), (3), (4), (5), (6). Actually, these equations

show how depends from other characteristics of the furnace - heater temperature,

geometry of furnace, velocity of fabric drift, etc. We can use these characteristics to

control while minimizing (7).

If we choose heater temperature () as control parameter, then optimization

problem for making as close as possible to reads as

{
 ()

()

 () () () () ()

 (8)

where the set of admissible controls is defined as

 { () () }
for some fixed (), [).

2. Theoretical results

Before we present some theoretical results, let us start by introducing some general

definitions.

DEFINITIONS

First of all, the standard Lebesgue and Sobolev spaces let us denote by () (is an

arbitrary set equipped with some measure and []) and
 () (is an

arbitrary bounded Lipschitz domain in). In addition, let us introduce the following

functional spaces:

 () {

 () | }, where ;

 () {
 () | ()}, where . The norm here we

define by ‖ ‖ () ‖ ‖ () ‖ ‖ ();

 ̇ () {
 () | ()}, where . The

norm here we define by ‖ ‖ ̇ () ‖ ‖ () ‖ ‖ ();

 ⁄ () is a Banach space consisting of all functions ,

which together with their directional derivatives (in the sense of distributions)

() belong to ⁄ (). In context of this space we will also consider

the weighted Lebesgue spaces ̃ ⁄ () (is an arbitrary measurable subset of

), where traces of the functions ⁄ () belong (see [2]);

By we denote identity operator mapping appropriate functional spaces into itself.

By we denote dual space of an arbitrary Banach space and by 〈 〉 - duality

pairing between elements , .

Throughout this paper we will put the following restrictions on geometry of the

furnace:

A1 () () (), where (), (),
 ();

A2 is bounded Lipschitz domain;

A3 (), where { } () () and

 { } () ().
Let us also suppose that the following hypotheses hold for variables and constants

found in (8):

B1 (), (), (), (), (],

 (];
B2 (), (), (), () and there exist some

 (), [) such that:

 () ;
 () ;

 () .
Let us also define:

 { ̇ ()} ⁄ ().
CONTROL-TO-STATE OPERATOR

Using already developed techniques (see also [3], [4], or [8]) the following result can

be proved about existence of control-to-state operator:

Theorem 1 [Existence of control-to-state operator].

Under hypotheses A1-A3, B1-B2 for every fixed control there exists one and

only one feasible state () of (8), i.e. there exists unique defined control-to-

state operator

 () (
 ()

 ()
)

of (8) as mappings from U to
 () ⁄ ().

The following result about boundedness of the state is important for further

analysis:

Theorem 2 [Boundedness of state].

Under hypotheses A1-A3, B1-B2 for every fixed control the following estimate

holds:

 () .

Now, if we exclude the variables , , from the state equation of (8) and take into

account the previous result about boundedness of , then the state equation can be

rewritten in a weak form:

(()

)

 ()

[() (()) (())]

 ̇ (), (9)

where { ̇ ()} is unknown parameter,

 (⁄ () ⁄ ()) and (⁄ () ⁄ ()) are nonlocal operators,

but function is defined in such a way that at interval [] it coincide with

the mapping , but at infinity it has linear growth rate:

 () {

| | | |

2.1.Gradient formula

In order to apply suitable numerical methods for solving of optimal control problems,

it is important to know mathematical properties of a cost functional. For example, if

we apply gradient or gradient projection type methods for solving of optimal control

problems, it is important to know basic smoothness properties of the cost functional

and a way how to calculate gradient of a cost functional.

We have the following result about differentiability of the cost functional

 (()) of (8):

Theorem 3 [Differentiability of cost functional].

If the hypotheses A1-A3, B1-B2 hold, then for every two arbitrary chosen controls

 , the following formula holds:

 (())
 (())

 [] [](‖ ‖ ()),

where the derivative [] () has the representation

 [] | |
 (

 ()(

))

 (11)

and ()
 () ⁄ () is the solution of the adjoint problem:

{

 ()

 | |

 (

 ()(

))

()

 ()

()

 ()(

)

 (12)

where

 {

Similarly as it was done in case of the state equation, we can also rewrite the adjoint

problem (12) in a weak form. If we exclude the variables ,
 ,

 from the ajoint

equation, then we will obtain:

(()

)

 ()[()()]

 ()

 (),

 (13)

where
 () is unknown variable.

3. Optimization algorithms

We are using gradient projection type method for numerical optimization of the

problem (8).

1.1.Gradient projection method

Gradient and gradient projection type methods are widely used in numerical

optimization due to simplicity and relatively high efficiency of these methods.

However, if we want successfully to apply such type of optimization methods, then

cost functional of the optimization problem must have some smoothness properties. In

addition, we must also have formula, using which to calculate gradient of the cost

functional.

In case of the problem (8) for gradient calculation of the cost functional (())
we can use the formula (11). As it turns out, this formula allows us to calculate

gradient of the cost functional effectively and with great precision. If we, for example,

compare this with numerical differentiation, then the formula (11) is much superior in

terms of precision and usage of computation resources. If we would use numerical

differentiation, then every gradient calculation requires numerous times of solving of

the state equation. At the same time, if we would use the formula (11), then every

gradient calculation requires only one time of solving of the state equation and one

time of solving of the adjoint problem (12).

To generate minimizing sequence of control parameters starting from some initial

guess , we are using the following gradient projection algorithm:

{

()

 { {
()
 () [

()
] } }

()

 (14)

Here coefficients () [) are usually calculated using some line search

algorithm. To guarantee that

 ((
()

)
()

) ((
()
)

()
)

we defined () { ()}, where

 () {

 ((
)

) ((
()
)

()
)

 { {

()
 [

()
] } }

 } { }

for some fixed (), (), ().

For practical implementation of the given gradient projection algorithm we would use

the following flow diagram:

Scheme 1. Optimization (gradient projection) algorithm.

As it is easy to see from this diagram that each iteration of the proposed gradient

projection algorithm includes several steps:

1. Solving of the state equation;

2. Solving of the adjoint equation and gradient calculation;

3. Using line search algorithm and repeated solving of the state equation in order

to find optimal gradient iteration step;

4. Calculation of improved control parameter and transition to the next gradient

iteration.

4. Methods for solving of state and adjoint equations

As it is easy to see from description of the gradient projection algorithm, then in case

of the problem (8) each gradient iteration involves at least one inversion of the adjoint

equation and up to ([⁄ (⁄)]) inversions of the state equation. Therefore

efficiency of the optimization algorithm largely depends on efficiency of inversion

methods of the state and adjoint equations.

In order to choose the best method, we tried several methods for solving of the state

and adjoint equations.

Now, in order to proceed further, let us rewrite the state equation (10) and the adjoint

equation (13) in operator form. First of all, let us define

 () ̇
 (),

 () ̇
 (),

 () (

 ())

,

 () (

 ())

as

〈 () 〉 ̇ ()

(()

)

 ()

[(())] ,

〈 () 〉 ̇ ()

[() (())] ,

〈 () 〉 ()

(()

)

 () ,

〈 () 〉 ()

 ()[()()] .

Therefore, if we denote and , then the equations (10),

(13) can be rewritten in the following way:

 () , () .

4.1.Virtual time method

As first variant for numerical solving of the state and adjoint equations we developed

an algorithm based on transient continuation and linearization techniques.

Since the state equation of the problem (8) is elliptical boundary value problem, then,

in order to obtain simple iterative algorithm for solving of this problem, we can use

standard transient continuation technique (see [7]). Using this technique, at first the

original elliptic boundary value problem is artificially transformed into a new

parabolic problem by introducing a virtual time variable. Afterwards by discretization

of this parabolic problem along the virual time variable using Euler implicit schema,

we will obtain

{

 (

()
) (

()
)

 ()
 (

()
)

()

 (15)

where () is calculated using a SER (switched evolution relaxation) formula (defined

later). Here is some initial guess, whereas
()

 is -th approximation of .

In order to obtain final form of the algorithm, let us define the following operator:

 [] () ̇
 ()

(for fixed ()) as

〈 []() 〉 ̇ ()

 () .

Due to uniform monotonicity of [] ([]) (for fixed
(), ()), there exists continuous inverse operator []

 .

Therefore, if we define [] ([]), then we can rewrite the first

equation of (15) in an equivalent form:

()

 [
()

()
]

([
()

()
](

()
) (

()
)).

By taking this into account and by applying simple iteration method for solving of this

equation, we will obtain:

{

() [
()

(())
]

([
()

(())
](

()
) (

(())
))

()

 () ()
 (16)

where
(())

 is -th approximation of , but () we calculate using the following

formula:

 () {

‖ (
(())

)‖
 ̇
 ()

‖ (
(())

)‖
 ̇
 ()

 }.

Here values of the parameters (), [) we must choose such a

way to guarantee convergence of the algorithm (16).

Also for the adjoint equation (12) we can use similar technique, to obtain simple

iterative algorithm for solving of this equation. In this case situation is even simpler,

since iteration scheme:

{

 (

()
) (

()
)

 ()
 (

()
)

()

 (17)

is linear with respect unknown variable
()

 and therefore we do not need to

supplement another level of iterations in (17) in order to solve the first equation of

this scheme. Therefore, if we define [] () (for fixed ()),
then due to uniform monotonicity of this operator, there exists continuous inverse

operator []
 . But then, if we define [] , then we can rewrite the

first equation of (17) in an equivalent form:

()

 [
()]

([

()](
()

) (
()
)).

If we take this into account, then we will obtain:

{

()

 [
()]

([

()](
()

) (
()
))

()

 (18)

where
()

 is -th approximation of , but () we calculate using the following

formula:

 () {

‖ (
()
)‖
(

 ())

‖ (
()
)‖
(

 ())

 }.

Here values of the parameters (), [) we must choose such a

way to guarantee convergence of the algorithm (18).

In order to implement the iteration schemes (16), (18), we must discretize equations,

which appear in these schemes, using one of the commonly used approaches – finite

difference method, finite value method or finite element method. We chose finite

volume method for this purpose.

Since open source library OpenFOAM is intended for solving of PDE boundary value

problems for arbitrary defined 3D geometries using finite volume approach, then we

chose this library as base for implementation of the iteration schemes (16), (18).

The iteration schemes (16), (18) for solving of the state and the adjoint equations we

implemented according to the following flow diagrams:

Scheme 2. Virtual time method for solving of the state and adjoint equations.

Here we must note, that, although the real implementations of (16), (18) work

excelent in practice, however it is not clear yet, how to prove the following

convergence result:

(()) ()

→
()

 ()
→

as .

4.2.Contraction mapping method

As second variant for numerical solving of the state and adjoint equations we

developed an algorithm based on simple iteration method for contraction mapping.

In order to obtain an algorithm for solving of the state equation of (8), let us define

operators:

 [] ̇ () ̇
 (),

 () ̇
 (),

(for fixed ()) as

〈 []() 〉 ̇ ()

(()

)

 () ,

〈 () 〉 ̇ ()

 () .

Due to uniform monotonicity of (), there exists continuous inverse

operator
 . Therefore, if we define () and take into account, that

 (), then we can rewrite the original state equation in an equivalent

form:

 ()
 (()) .

If we take this into account, then by applying simple iteration method for this

equation, we will obtain:

{

()

 ((

()
))

()

 (19)

Here we choose as initial guess, whereas
()

 is -th approximation of .

Due to uniform monotonicity of [] (for fixed ()), there exists

continuous inverse operator []
 . Therefore, if we apply a Newton type method

for calculation of
 in the first equation of (19), then we will obtain:

{

()
()

()

()

 [
()

]

(()((

()
) (

(())
)))

 () {

‖ (
()

) (
(())

)‖

 ()

 }

()

 () ()

 (20)

where value of the parameter () we must choose sufficiently small to

guarantee convergence of the algorithm (20).

Also for the adjoint equation (12) we can use similar technique, to obtain simple

iterative algorithm for solving of this equation. In order to do this, let us define the

following operator:

 () (

 ())

as

〈 () 〉 ()
 () .

Due to uniform monotonicity of (), there exists continuous inverse

operator
 . Therefore, if we define () and take into account, that

 (), then we can rewrite the original adjoint equation in an equivalent

form:

 ()
 (()) .

If we take this into account, then by applying simple iteration method for this

equation, we will obtain:

{

()

 ((

()
))

()

 (21)

Here
()

 is -th approximation of .
In order to implement the iteration schemes (20), (21), we must discretize equations,

which appear in these schemes. Also in this case we used finite volume method for

discretization.

The iteration schemes (20), (21) for solving of the state and the adjoint equations we

implemented according to the following flow diagrams:

Scheme 3. Contraction mapping method for solving of the state and adjoint equations.

As it turns out, for the iteration schemes (20), (21) the following convergence result

holds:

(()) ()

→
()

 ()
→

as . Moreover, it is possible to show, that:

Theorem 4 [Convergence of discretized solutions].

For any sequence of structured meshes (is collection of pairwise disjoint

rectangular cells , such that ̅ ̅
), where mesh size goes to 0, when

 , for solutions ̃
(())

 (), ̃
() () (() { ()

 ∑
}) of the discretized iteration schemes (20), (21) the following

convergence result holds:

 ̃
(()) ()

→ ̃
() ()
→

 ̃
(()) ()

→ ̃
() ()→

as .

5. Methods for calculating of nanlocal operators

As it is easy to see, that every calculation of approximate solutions using the iteration

schemes (20), (21) involves frequent calculation of values of the nonlocal operators

 , (see (10), (13)). In order to obtain calculation algorithms for this purpose, we

used simple iteration method for contraction mappings and combined it with finite

volume method for equation discretization.

CONTRACTION MAPPING METHOD

As it was already pointed out, that values of the operators (), () for given

functions ⁄ (), ⁄ () can be calculated using the following system:

{

 () () ()
 ()(

)

()

 ()

()

 ()(

)

 (22)

where

 () () () {

 ()

 (23)

and

 () () () {

 ()

 (24)

If we are using the simple iteration method for contraction mapping to solve this

system, then we will get:

{

 ()() () ()

 ()()(
)

() ()

 ()()

()

 ()()(

)

 ()

 (25)

It is possible to prove, that, if () and () is calculated according to the

formulas (23), (25), then:

 ()
 ()
→ (),

as . Moreover, it is possible to show, that:

Theorem 5 [Convergence of discretized solutions].

For any sequence of structured meshes (̅ ̅
), where mesh size goes to

0, when , for solutions ̃() () (() { ()

 (∑
)}) of the discretized iteration scheme (25) the following

convergence result holds:

 ̃()
 ()
→ (),

as .

Also, if () and () is calculated according to the formulas (24), (25),

then:

 ()
 ()
→ (),

as . Moreover, it is possible to show, that:

Theorem 6 [Convergence of discretized solutions].

For any sequence of structured meshes (̅ ̅
), where mesh size goes to

0, when , for solutions ̃() () (() { ()

 (∑
)}) of the discretized iteration scheme (25) the following

convergence result holds:

 ̃()
 ()
→ (),

as .

The iteration scheme (25) for calculation calculation of values of the nonlocal

operators , we implemented according to the following flow diagram:

Scheme 4. Algorithm for calculation of nonlocal operators.

6. Numerical simulations

To test performance of the previously described gradient projection method we

carried out some simple numerical tests. Geometry of the furnace (see Figure 2) as

well as coefficient values mentioned in B1-B2 we imposed almost the same as it is

described in [5]:

 () () (),
 () () () ̅ ,
 {() } .

Additionally we set the following bounds to the heater temperature: ,

 . To achieve quick fabric temperature increase at the entrance of the

furnace and it slow decrease near the exit of the furnace, we imposed the target

temperature to have -axis profile as shown in the Figure 3 (marked with thin

dotted line).

Figure 2. Geometry of the furnace for test simulation.

For discretization of (20) and (21) we used finite volume aproach (see [6], [9]).

Following this approach the domain was split into mesh with 19440 spatial cells

and - into mesh with 65016 spatial cells and 32 angular cells. All

numerical simulations were done using self-implemented solver based on the

OpenFOAM library.

We performed several gradient descent tests starting from different initial temperature

distributions on the heater. In all these cases we obtained very similar results -

calculated optimal cost functional values, as well as optimal controls were nearly

identical.

Constantly running many test simulations, we detected main convergence properties

of the gradient descent method. At the first 10 to 20 iterations of the optimization

process cost functional values decrease very fast and reach nearly optimal value

(controls at the same time tended to reach maximal allowed value on some

significant part of). After that phase convergence rate of the optimization process

towards minimum significantly slows down, even prohibiting calculation of optimal

control in some cases.

To illustrate performance of the gradient descent method, in Table 1 we summarized

optimization progress for case, when initial heater temperature was imposed to be

600K.

Iteration No Cost functional Line search steps

1 40.1477 1

2 19.1559 1

3 12.1004 1

… … …

13 1.7503 1

14 1.7276 2

15 1.7254 2

Table 1. Gradient descent test for .

The temperature -axis profiles of fabric and heater before and after numerical

optimization for this case are shown in the Figure 3 (see also Figure 4). Thick dashed

lines mark temperature profiles before optimization, whereas thick solid lines mark

temperature profiles after optimization.

Figure 3. Temperature – axis profiles of , , and .

 Before optimization After optimization

Figure 4. Temperature fields , , and .

To solve the state and adjoint equations, we used the iteration schemes (20), (21). In

order to illustrate performance of these schemes, in Table 2 and Table 3 (see also

Figure 5) we summarized information about convergence of inner and outer iterations.

 Residual

0 68480.47

1 13896.73

2 2928.82

3 587.30

4 114.84

5 22.15

6 4.23

7 0.80

Table 2. Convergence of outer iterations.

0 68480.47 0.29 13896.73 1 2928.82 1

1 55044.67 0.36 1075.27 1 37.38 1

2 36660.21 0.54 5.43 1 0.007 1

3 18467.04 1 0.0005 1 0.0005 1

4 3249.37 1 - - - -

5 274.20 1 - - - -

6 2.63 1 - - - -

7 0.0005 1 - - - -

Table 3. Convergence of inner iterations.

 Outer iterations Inner iterations

Figure 5. Convergence of outer and inner iterations.

References

[1] K. Birgelis and U. Raitums. Strictly convergent algorithm for an elliptic equation

with nonlocal and nonlinear boundary conditions. Mathematical Modelling and

Analysis, 17(1):128–139, 2012.

[2] V. Agoshkov. Boundary value problems for transport equations. Birkhauser, Boston,

1998.

[3] K. Birgelis. Optimal control in models with conductive-radiative heat transfer.

Mathematical Modelling and Analysis, 8(1):1–12, 2003.

[4] K. Birgelis. Sensitivity analysis for an optimal control problem of heat transfer.

University of Latvia, Riga, 2007. (PhD Thesis).

[5] A. Buikis and A. D. Fitt. A mathematical model for the heat treatment of glass fabric

sheets. IMA Journal of Mathematics Applied in Business and Industry, 10(1):55–86,

1999.

[6] R. Eymard, T. Gallouet, and R. Herbin. Finite Volume Methods. University of

Wroclaw, 2010.

[7] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient

continuation. SIAM J. Numer. Anal., 35(2):508–523, 1998.

[8] M. Laitinen and T. Tiihonen. Conductive-radiative heat transfer in grey materials.

Q. Appl. Math., 59(4):737–768, 2001.

[9] E. M. Sparrow, W. J. Minkowycz and J. Y. Murthy. Handbook of numerical heat

transfer. Wiley, Hoboken, 2006.

