
MATHEMATICAL ANALYSIS, MODELING AND 

OPTIMIZATION OF COMPLEX HEAT TRANSFER 

PROCESSES 
 

Dr. Uldis Raitums, Dr. Kārlis Birģelis 

Goals of research 

 

To develop and investigate mathematical properties of algorithms for numerical 

optimization of heat transfer processes in nonlinear systems with nonlocal boundary 

conditions. 

 

Planned tasks and activities 

 

The main research activities in this project we have planned to focus on investigation 

of special class of optimal control problems, applied to optimize complex physical 

systems, where heat transfer occurs simultaneously in different ways – due to heat 

conduction, convection and heat radiation propagation, Typically, problems of this 

class consist of two parts: 

1. A nonlinear system of partial differential and integral equations, which 

describes dependence of temperature field as state variable from other control 

parameters; 

2. A cost functional, against which optimization is carried out. 

All research activities we plan to divide into two different stages: 

1. At first stage we planned to make all necessary theoretical analysis of the 

problem in order to obtain auxiliary results, which could be used at second 

stage of research activities (for example, finding of an algorithm how to 

construct a minimizing sequence of controls, or finding of a formula for 

calculation of the gradient of the cost functional). As it is expected, obtaining 

of these theoretical results will not be easy due to nonlinear and nonlocal 

dependence of the state and control parameters in the state equation. 

2. At second stage we planned to develop numerical methods and apply them for 

simple test problems. As it is expected, that here we will not be able to use 

standard numerical methods, but we will need to develop special methods used 

only for this case. 

 

1.Problem formulation 

 

To optimize heat transfer processes in complicated physical systems, where various 

physical phenomena simultaneously occur – heat conduction and convection, heat 

radiation propagation, we can use standard optimization techniques. 

Typically, mathematical formalization for the given class of problems leads to the 

following type of optimal control problems: 

{
 (   )      

 (   )          
                    

      (1) 

Here   denotes a state parameter,   – a control parameter,   – a set of admissible 

controls,  (   ) - a cost functional, which “measures” optimality of a freely chosen 



parameter pair (   ), but  (   )    - a state equation, which defines relationship 

between state and control parameters. 

In order to investigate mathematical properties and derive numerical methods for 

solving of the given class of problems about modeling and optimization of 

complicated heat transfer processes in physical systems, we chose as model a real 

world problem from glass fabric industry about temperature field optimization in high 

temperature furnaces (see paper of A.Buikis and A.D.Fitt [5]). 

Let the furnace has the following design - it consists of simple cylindrical heater 

wrapped around constantly moving glass fabric sheet (see Fig. 1). Let    (    )  
(      )  (      )  is a part of the fabric lying directly inside the furnace. The 

inflow boundary { }  (      )  (      ) we denote by    and outflow boundary 
{  }  (      )  (      )  by   . A volume of air surrounding both fabric and heater 

let us denote by   . The boundary     of this domain splits into three disjoint parts 

  ,   ,   , where    is fabric-air interface,    is heater-air interface and    ir 

remainder of the domain boundary     (marked with dotted line in Fig. 1). 

 

  
    ,    cross section      ,    cross section 

Figure 1. Geometry of the furnace. 

 

Let   ,    denotes outward normal to   ,   , respectively. Let us also denote the 

sets:        ,  
       {          },  

       {         
 }, where   {      | |   } is unit sphere. If   is a function defined on    , 

where   is some domain, then by (   )  we denote directional derivative of this 

function in the direction  . 

Due to different physical characteristics of air and fabric there will be very different 

heat transfer processes in each of the components of multi-domain system   ,   . 
Since fabric is almost opaque for heat radiation, then heat conduction and convection 

(due to fabric drift) will prevail over other heat transfer forms in   . At the same time, 

since air is transparent for heat radiation and working temperature of furnace is high 

enough (about 1100K) to produce significant radiative heat flux through air-solid 

interface then radiative heat transfer will dominate over other heat processes in   . 
Since heat conduction and convection prevail in    then for temperature field   ( ) 

in this domain we will have the following equation: 

        
   

   
     on        (2) 

To describe radiative heat transfer in    we can use models proposed in [2], [8]. If we 

assume that    is filled with transparent and nonparticipating medium and     emits, 

absorbs and reflects heat radiation like gray surface, then at thermal equilibrium for 

heat radiation intensity  (   ) (measures photon flux intensity at point   traveling 

into direction  ) in      and it traces   (   ),   (   ) on the sets   ,   , 

respectively, we will have the following system: 

(   )                (3) 

and 
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where  ( ) and  ( ) are emissivity and temperature fields on     defined as 

 ( )   {

              

              
               

   ( )   {

  ( )            

  ( )            
                      

 

For total heat flux on the fabric-air interface    we will have the following equation 

   
   

   
     

    
    

   
  (    )(    

 )      (     ). 

 (5) 

The first two terms in right hand side of this equation describe radiative part of total 

flux through   , whereas the last term describes heat flux determined by Newton type 

heat exchange between fabric and air (having fixed temperature   ( ) on   ). In 

addition, let us assume that 

{
                       

   
   

   
           

      (6) 

for some fixed    as element of   
 (  ). 

To fulfill a task and optimize steady state temperature field of the fabric sheet   ( ), 

we choose some target temperature profile   ( ) on    and define a cost functional 

 (     )      
(     )

 
   

 

 
 
  
  
   ,  

 (7) 

where   (    ) is some regularization parameter (usually it has value in range 

from      to     ). Minimization of this functional is equivalent to force real 

temperature    be as close as possible to the profile   . At the same time we must take 

into account that    is determined by (2), (3), (4), (5), (6). Actually, these equations 

show how    depends from other characteristics of the furnace - heater temperature, 

geometry of furnace, velocity of fabric drift, etc. We can use these characteristics to 

control    while minimizing (7). 

If we choose heater temperature   ( ) as control parameter, then optimization 

problem for making    as close as possible to    reads as 

{
 (     )     

(     )
 
   

 

 
 
  
  
        

           ( ) ( ) ( ) ( ) ( )                                        
                                                                                         

    

 (8) 

where the set of admissible controls is defined as 

   {    (  )       ( )    } 
for some fixed    (    ),    [     ). 
 

2. Theoretical results 

Before we present some theoretical results, let us start by introducing some general 

definitions. 

DEFINITIONS 

First of all, the standard Lebesgue and Sobolev spaces let us denote by   ( ) (  is an 

arbitrary set equipped with some measure and   [    ]) and   
 ( ) (  is an 

arbitrary bounded Lipschitz domain in   ). In addition, let us introduce the following 

functional spaces: 

   
 (   )   {    

 ( )   |              }, where     ; 



   (   )   {    
 ( )   |    ( )}, where     . The norm here we 

define by ‖ ‖  (   )  ‖ ‖   ( )  ‖ ‖  ( ); 

  ̇ (       )   {    
 (    )   |     (  )}, where         . The 

norm here we define by ‖ ‖ ̇ (       )  ‖ ‖   (    )  ‖ ‖  (  ); 

    ⁄ (   ) is a Banach space consisting of all functions        , 

which together with their directional derivatives (in the sense of distributions) 

(   )  belong to    ⁄ (   ). In context of this space we will also consider 

the weighted Lebesgue spaces  ̃  ⁄ ( ) (  is an arbitrary measurable subset of 

    ), where traces of the functions      ⁄ (   ) belong (see [2]); 

By   we denote identity operator mapping appropriate functional spaces into itself. 

By    we denote dual space of an arbitrary Banach space   and by 〈   〉  - duality 

pairing between elements     ,    . 

Throughout this paper we will put the following restrictions on geometry of the 

furnace: 

A1     (    )  (      )  (      ), where    (    ),    (    ), 
   (    ); 

A2    is bounded Lipschitz domain; 

A3             (     ), where     { }  (      )  (      ) and 

    {  }  (      )  (      ). 
Let us also suppose that the following hypotheses hold for variables and constants 

found in (8): 

B1    (    ),    (    ),    (    ),   (    ),    (   ], 

   (   ]; 
B2      (     ),      (  ),      (  ),      (  ) and there exist some 

   (    ),    [     ) such that: 

     ( )                ; 
     ( )                ; 

     ( )                . 
Let us also define: 

   {            ̇ (        )}     ⁄ ( ). 
CONTROL-TO-STATE OPERATOR 

Using already developed techniques (see also [3], [4], or [8]) the following result can 

be proved about existence of control-to-state operator: 

Theorem 1 [Existence of control-to-state operator]. 

Under hypotheses A1-A3, B1-B2 for every fixed control      there exists one and 

only one feasible state (    )    of (8), i.e. there exists unique defined control-to-

state operator 

 (  )  (
  (  )

  (  )
) 

of (8) as mappings from U to   
 (  )     ⁄ ( ). 

The following result about boundedness of the state    is important for further 

analysis: 

Theorem 2 [Boundedness of state]. 

Under hypotheses A1-A3, B1-B2 for every fixed control      the following estimate 

holds: 

     (  )                . 



Now, if we exclude the variables  ,   ,    from the state equation of (8) and take into 

account the previous result about boundedness of   , then the state equation can be 

rewritten in a weak form: 

 
  
(  (      )    

   

   
 )    

  
  (     )    

   
  
[(    ) ( (  ))    ( (  ))]          

 ̇ (        ), (9) 

where    {            ̇ (        )} is unknown parameter,    

 (   ⁄ (  )     ⁄ (  )) and     (   ⁄ (  )     ⁄ (  )) are nonlocal operators, 

but function       is defined in such a way that at interval [    ] it coincide with 

the mapping     , but at infinity it has linear growth rate: 

 ( )   {

| |                             | |     

   
      

                      

   
      

                 

 

 

 

2.1.Gradient formula 

In order to apply suitable numerical methods for solving of optimal control problems, 

it is important to know mathematical properties of a cost functional. For example, if 

we apply gradient or gradient projection type methods for solving of optimal control 

problems, it is important to know basic smoothness properties of the cost functional 

and a way how to calculate gradient of a cost functional. 

We have the following result about differentiability of the cost functional 

 (  (  )   ) of (8): 

Theorem 3 [Differentiability of cost functional]. 

If the hypotheses A1-A3, B1-B2 hold, then for every two arbitrary chosen controls 

    ,          the following formula holds: 

 (  (      )       ) 
  (  (  )   )     

 [  ]       [  ](‖   ‖  (  )), 

where the derivative  [  ]    (  ) has the representation 

 [  ]      |  |
 ( 

    
   
  
 (    )(    

 )   )       

 (11) 

and (     )    
 (     )     ⁄ ( ) is the solution of the adjoint problem: 
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 (12) 

where 

   {

               
               
               

 



Similarly as it was done in case of the state equation, we can also rewrite the adjoint 

problem (12) in a weak form. If we exclude the variables   ,   
 ,   

  from the ajoint 

equation, then we will obtain: 

 
  
(  (      )    

   
   

 )     
  
        

  
  
            

  (  )[(    )(  )]    

   
  
 (     )              

 (     ),  

 (13) 

where      
 (     ) is unknown variable. 

 

3. Optimization algorithms 

 

We are using gradient projection type method for numerical optimization of the 

problem (8). 

 

 

 

1.1.Gradient projection method 

Gradient and gradient projection type methods are widely used in numerical 

optimization due to simplicity and relatively high efficiency of these methods. 

However, if we want successfully to apply such type of optimization methods, then 

cost functional of the optimization problem must have some smoothness properties. In 

addition, we must also have formula, using which to calculate gradient of the cost 

functional. 

In case of the problem (8) for gradient calculation of the cost functional  (  (  )   ) 
we can use the formula (11). As it turns out, this formula allows us to calculate 

gradient of the cost functional effectively and with great precision. If we, for example, 

compare this with numerical differentiation, then the formula (11) is much superior in 

terms of precision and usage of computation resources. If we would use numerical 

differentiation, then every gradient calculation requires numerous times of solving of 

the state equation. At the same time, if we would use the formula (11), then every 

gradient calculation requires only one time of solving of the state equation and one 

time of solving of the adjoint problem (12). 

To generate minimizing sequence of control parameters starting from some initial 

guess      , we are using the following gradient projection algorithm: 

{
  
(   )

    {   {  
( )
  ( ) [  

( )
]   }    }           

  
( )                                                                                                  

 (14) 

Here coefficients  ( )  [    ) are usually calculated using some line search 

algorithm. To guarantee that 

 (  (  
(   )

)   
(   )

)   (  (  
( )
)   

( )
)           

we defined  ( )      { ( )}, where 

 ( )  {             

 (  (  
 )   

 )   (  (  
( )
)   

( )
)  

  
     {   {  

( )
     [  

( )
]   }    }    

   } { } 

for some fixed   (    ),   (   ),   (   ). 



 

For practical implementation of the given gradient projection algorithm we would use 

the following flow diagram: 

 
Scheme 1. Optimization (gradient projection) algorithm. 

As it is easy to see from this diagram that each iteration of the proposed gradient 

projection algorithm includes several steps: 

1. Solving of the state equation; 

2. Solving of the adjoint equation and gradient calculation; 

3. Using line search algorithm and repeated solving of the state equation in order 

to find optimal gradient iteration step; 

4. Calculation of improved control parameter and transition to the next gradient 

iteration. 

 

4. Methods for solving of state and adjoint equations  

 

As it is easy to see from description of the gradient projection algorithm, then in case 

of the problem (8) each gradient iteration involves at least one inversion of the adjoint 

equation and up to ([     ⁄ (  ⁄ )]   ) inversions of the state equation. Therefore 

efficiency of the optimization algorithm largely depends on efficiency of inversion 

methods of the state and adjoint equations. 

In order to choose the best method, we tried several methods for solving of the state 

and adjoint equations. 

Now, in order to proceed further, let us rewrite the state equation (10) and the adjoint 

equation (13) in operator form. First of all, let us define 
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 (     )   , 

〈  (  )  〉   (     )    

  
  
  (  )[(    )(  )]   . 

Therefore, if we denote           and          , then the equations (10), 

(13) can be rewritten in the following way: 

  (  )   ,   (  )   . 

 

4.1.Virtual time method 

As first variant for numerical solving of the state and adjoint equations we developed 

an algorithm based on transient continuation and linearization techniques. 

Since the state equation of the problem (8) is elliptical boundary value problem, then, 

in order to obtain simple iterative algorithm for solving of this problem, we can use 

standard transient continuation technique (see [7]). Using this technique, at first the 

original elliptic boundary value problem is artificially transformed into a new 

parabolic problem by introducing a virtual time variable. Afterwards by discretization 

of this parabolic problem along the virual time variable using Euler implicit schema, 

we will obtain 

{
 
 

 
  (  

(   )
)  (  

( )
)

 ( )
    (  

(   )
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( )
                                                

                                                  

   

 (15) 

where  ( ) is calculated using a SER (switched evolution relaxation) formula (defined 

later). Here     is some initial guess, whereas   
( )

 is  -th approximation of   . 

In order to obtain final form of the algorithm, let us define the following operator: 

  [ ]   (     )   ̇ 
 (        ) 

(for fixed     (     )) as 

〈  [ ]( )  〉 ̇ (        )       
   

 ( )    . 

Due to uniform monotonicity of   [   ]   (         [ ]) (for fixed   
(    ),     (     )), there exists continuous inverse operator   [   ]

  . 

Therefore, if we define   [   ]    (  [ ]    ), then we can rewrite the first 

equation of (15) in an equivalent form: 

  
(   )

   [ 
( )   

( )
]
  

(  [ 
( )   

( )
](  

(   )
)   (  

( )
)). 

By taking this into account and by applying simple iteration method for solving of this 

equation, we will obtain: 

{
 
 

 
   

(       )    [ 
( )   

(   ( ))
]
  

(  [ 
( )   

(   ( ))
](  

(     )
)   (  

(   ( ))
))  

  
(   )                                                                                                                                          

                    ( )        ( )                                                                         
 (16) 

where   
(   ( ))

 is  -th approximation of   , but  ( ) we calculate using the following 

formula: 



 ( )     {  

‖  (  
(   ( ))

)‖
 ̇ 
 (        )

‖  (  
(   ( ))

)‖
 ̇ 
 (        )

   }. 

Here values of the parameters    (    ),    [     ) we must choose such a 

way to guarantee convergence of the algorithm (16). 

Also for the adjoint equation (12) we can use similar technique, to obtain simple 

iterative algorithm for solving of this equation. In this case situation is even simpler, 

since iteration scheme: 

{
 

 
 (  

(   )
)  (  

( )
)

 ( )
    (  

(   )
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( )
                                                

                                                  

   

 (17) 

is linear with respect unknown variable   
(   )

 and therefore we do not need to 

supplement another level of iterations in (17) in order to solve the first equation of 

this scheme. Therefore, if we define   [ ]   (     ) (for fixed   (    )), 
then due to uniform monotonicity of this operator, there exists continuous inverse 

operator   [ ]
  . But then, if we define   [   ]       , then we can rewrite the 

first equation of (17) in an equivalent form: 

  
(   )

   [ 
( )]

  
(  [ 

( )](  
(   )

)   (  
( )
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If we take this into account, then we will obtain: 

{
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 (18) 

where   
( )

 is  -th approximation of   , but  ( ) we calculate using the following 

formula: 

 ( )     {  

‖  (  
( )
)‖
(  
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‖  (  
( )
)‖
(  
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   }. 

Here values of the parameters    (    ),    [     ) we must choose such a 

way to guarantee convergence of the algorithm (18). 

In order to implement the iteration schemes (16), (18), we must discretize equations, 

which appear in these schemes, using one of the commonly used approaches – finite 

difference method, finite value method or finite element method. We chose finite 

volume method for this purpose. 

Since open source library OpenFOAM is intended for solving of PDE boundary value 

problems for arbitrary defined 3D geometries using finite volume approach, then we 

chose this library as base for implementation of the iteration schemes (16), (18). 

The iteration schemes (16), (18) for solving of the state and the adjoint equations we 

implemented according to the following flow diagrams: 

 



 

 
Scheme 2. Virtual time method for solving of the state and adjoint equations. 

 

Here we must note, that, although the real implementations of (16), (18) work 

excelent in practice, however it is not clear yet, how to prove the following 

convergence result: 

  
(   ( ))   (     )

→              
( )   

 (     )
→           

as     . 

 

4.2.Contraction mapping method  

As second variant for numerical solving of the state and adjoint equations we 

developed an algorithm based on simple iteration method for contraction mapping. 

In order to obtain an algorithm for solving of the state equation of (8), let us define 

operators: 

  [ ]  ̇ (        )   ̇ 
 (        ), 
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(for fixed     (     )) as 

〈  [ ]( )  〉 ̇ (        )     
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   ( )   . 

Due to uniform monotonicity of     (     ), there exists continuous inverse 

operator   
  . Therefore, if we define     (     ) and take into account, that 



    (     ), then we can rewrite the original state equation in an equivalent 

form: 

 (  )    
  (  (  ))   . 

If we take this into account, then by applying simple iteration method for this 

equation, we will obtain: 

{
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 (19) 

Here    we choose as initial guess, whereas   
( )

 is  -th approximation of   . 

Due to uniform monotonicity of   [ ] (for fixed     (     )), there exists 

continuous inverse operator   [ ]
  . Therefore, if we apply a Newton type method 

for calculation of   
   in the first equation of (19), then we will obtain: 

{
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 (20) 

where value of the parameter   (    ) we must choose sufficiently small to 

guarantee convergence of the algorithm (20). 

Also for the adjoint equation (12) we can use similar technique, to obtain simple 

iterative algorithm for solving of this equation. In order to do this, let us define the 

following operator: 

     
 (     )  (  

 (     ))
 
 

as 

〈  ( )  〉   (     )       
  (  )    . 

Due to uniform monotonicity of     (     ), there exists continuous inverse 

operator   
  . Therefore, if we define     (     ) and take into account, that 

    (     ), then we can rewrite the original adjoint equation in an equivalent 

form: 

 (  )    
  (  (  ))   . 

If we take this into account, then by applying simple iteration method for this 

equation, we will obtain: 

{

  
(   )

    
  (  (  

( )
))  

  
( )                                             
                                             

   

 (21) 

Here   
( )

 is  -th approximation of   . 
In order to implement the iteration schemes (20), (21), we must discretize equations, 

which appear in these schemes. Also in this case we used finite volume method for 

discretization. 



The iteration schemes (20), (21) for solving of the state and the adjoint equations we 

implemented according to the following flow diagrams: 

 

 

 
Scheme 3. Contraction mapping method for solving of the state and adjoint equations. 

As it turns out, for the iteration schemes (20), (21) the following convergence result 

holds: 

  
(   ( ))   (     )

→              
( )   

 (     )
→           

as     . Moreover, it is possible to show, that: 

Theorem 4 [Convergence of discretized solutions]. 

For any sequence of structured meshes    (   is collection of pairwise disjoint 

rectangular cells      , such that  ̅    ̅    
), where mesh size goes to 0, when 

    , for solutions  ̃ 
(   ( ))

  (  ),  ̃ 
( )   (  ) ( (  )   {    (  )  

  ∑         
}) of the discretized iteration schemes (20), (21) the following 

convergence result holds: 

 ̃ 
(   ( ))   (  )

→           ̃ 
( )   (  )
→        

 ̃ 
(   ( ))   (  )

→           ̃ 
( )   (  )→        

as     . 

 

5. Methods for calculating of nanlocal operators  

 

As it is easy to see, that every calculation of approximate solutions using the iteration 

schemes (20), (21) involves frequent calculation of values of the nonlocal operators 

  ,    (see (10), (13)). In order to obtain calculation algorithms for this purpose, we 



used simple iteration method for contraction mappings and combined it with finite 

volume method for equation discretization. 

CONTRACTION MAPPING METHOD 

As it was already pointed out, that values of the operators   (  ),    (  ) for given 

functions       ⁄ (  ),       ⁄ (  ) can be calculated using the following system: 

{

 ( )   (    ) ( )            
  (    )(    

 )          

(   )                                                                                               

  (   )  
   

 
 
(   )

 
 
    

   
  (    )(    

 )                    

 (22) 

where 

  (  )    ( )                 ( )   {
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and 

  (  )    ( )                 ( )   {
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 (24) 

If we are using the simple iteration method for contraction mapping to solve this 

system, then we will get: 

{
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 )           

(   ) (   )                                                                                                         
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 )                         

 ( )                                                                                                                                  
                                                                                                                                 

 (25) 

It is possible to prove, that, if      (  ) and   (  ) is calculated according to the 

formulas (23), (25), then: 

 ( )
  (  )
→      (  ), 

as     . Moreover, it is possible to show, that: 

Theorem 5 [Convergence of discretized solutions]. 

For any sequence of structured meshes    ( ̅    ̅    
), where mesh size goes to 

0, when     , for solutions  ̃( )   (  ) ( (  )   {    (  )    

    (∑         
)}) of the discretized iteration scheme (25) the following 

convergence result holds: 

 ̃( )
  (  )
→      (  ), 

as     . 

Also, if      (  ) and   (  ) is calculated according to the formulas (24), (25), 

then: 

 ( )
  (  )
→      (  ), 

as     . Moreover, it is possible to show, that: 

Theorem 6 [Convergence of discretized solutions]. 



For any sequence of structured meshes    ( ̅    ̅    
), where mesh size goes to 

0, when     , for solutions  ̃( )   (  ) ( (  )   {    (  )    

    (∑         
)}) of the discretized iteration scheme (25) the following 

convergence result holds: 

 ̃( )
  (  )
→      (  ), 

as     . 

The iteration scheme (25) for calculation calculation of values of the nonlocal 

operators   ,    we implemented according to the following flow diagram: 

 

 
Scheme 4. Algorithm for calculation of nonlocal operators. 

 

6. Numerical simulations  

 

To test performance of the previously described gradient projection method we 

carried out some simple numerical tests. Geometry of the furnace (see Figure 2) as 

well as coefficient values mentioned in B1-B2 we imposed almost the same as it is 

described in [5]: 

    (   )  (          )  (              ), 
    (   )  (            )  (         )   ̅ , 
    {(        )                }     . 

Additionally we set the following bounds to the heater temperature:        , 

        . To achieve quick fabric temperature increase at the entrance of the 

furnace and it slow decrease near the exit of the furnace, we imposed the target 

temperature    to have   -axis profile as shown in the Figure 3 (marked with thin 

dotted line). 

 



 
Figure 2. Geometry of the furnace for test simulation. 

 

For discretization of (20) and (21) we used finite volume aproach (see [6], [9]). 

Following this approach the domain    was split into mesh with 19440 spatial cells 

and        - into mesh with 65016 spatial cells and 32 angular cells. All 

numerical simulations were done using self-implemented solver based on the 

OpenFOAM library. 

We performed several gradient descent tests starting from different initial temperature 

distributions on the heater. In all these cases we obtained very similar results - 

calculated optimal cost functional values, as well as optimal controls were nearly 

identical. 

Constantly running many test simulations, we detected main convergence properties 

of the gradient descent method. At the first 10 to 20 iterations of the optimization 

process cost functional values decrease very fast and reach nearly optimal value 

(controls    at the same time tended to reach maximal allowed value    on some 

significant part of   ). After that phase convergence rate of the optimization process 

towards minimum significantly slows down, even prohibiting calculation of optimal 

control in some cases. 

To illustrate performance of the gradient descent method, in Table 1 we summarized 

optimization progress for case, when initial heater temperature was imposed to be 

600K. 

 

Iteration No Cost functional Line search steps 

1 40.1477 1 

2 19.1559 1 

3 12.1004 1 

… … … 

13 1.7503 1 

14 1.7276 2 

15 1.7254 2 
 

Table 1. Gradient descent test for        . 

 

The temperature   -axis profiles of fabric and heater before and after numerical 

optimization for this case are shown in the Figure 3 (see also Figure 4). Thick dashed 



lines mark temperature profiles before optimization, whereas thick solid lines mark 

temperature profiles after optimization. 

 

 
Figure 3. Temperature    – axis profiles of   ,   , and   . 

 

  
  Before optimization   After optimization 

Figure 4. Temperature fields   ,   , and   . 

 

To solve the state and adjoint equations, we used the iteration schemes (20), (21). In 

order to illustrate performance of these schemes, in Table 2 and Table 3 (see also 

Figure 5) we summarized information about convergence of inner and outer iterations. 

 

  Residual 

0 68480.47 

1 13896.73 

2 2928.82 

3 587.30 

4 114.84 

5 22.15 

6 4.23 

7 0.80 
 

Table 2. Convergence of outer iterations. 

 

                       

0 68480.47 0.29 13896.73 1 2928.82 1 

1 55044.67 0.36 1075.27 1 37.38 1 

2 36660.21 0.54 5.43 1 0.007 1 

3 18467.04 1 0.0005 1 0.0005 1 

4 3249.37 1 - - - - 



5 274.20 1 - - - - 

6 2.63 1 - - - - 

7 0.0005 1 - - - - 
 

Table 3. Convergence of inner iterations. 

 

  
  Outer iterations    Inner iterations 

Figure 5. Convergence of outer and inner iterations. 
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