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Aim of the research sub-activity: Development of specific methods of numerical 

analysis and applications in sophisticated problems of mathematical physics and 

development of improved, new, and advanced numerical methods for engineering 

problems. 

 

General: implementation of study’s purpose 
 

When modelling applied mathematical physics, hydrodynamics and 

magnetohydrodynamics problems, we need to numerically solve partial differential 

equations and their systems with in layers different coefficients on derivatives. The 

presence of these parameters, as well as the complex geometry of the solution area 

creates additional application difficulties for universal well-developed numerical 

methods and software packages and they become ineffective. Therefore, advanced 

special numerical methods must be developed, with good qualities of precision and 

easy on implementation in addressing the problems allowing parameters from wide 

range of changes. 

In the project research was initiated and continued into new special difference 

schemes for numerical modelling of ordinary and partial differential equations, which 

are based on the exact (differential) spectrum (eigenvalues and eigenfunctions) for the 

application on spatial 2
nd

 order derivative substitution with finite differences, creating 

differential schemes with exact spectrum (DSES). The particular matrix of finite 

differences is reduced to the canonical form by using spectrum of final differences. 

Canonical form diagonal matrix of order M discrete eigenvalues are replaced by the 

first M eigenvalues of differential operator, forming DSES matrix. Algorithms based 

on the method of lines, leaving derivatives for other directions continuous, were 

implemented for different 2D problems of mathematical physics (linear and non-

linear). Partial differential equation problems with different condition types on 

borders were studied. The developed algorithms are implemented with the help of 

MATLAB software, solving linear and nonlinear problems in differential equations.  

Problems of mathematical physics with periodic boundary conditions were researched 

specifically. Then circulant matrix algorithms can be created, which allow to simplify 

the calculations. DSES are particularly effective for Dirichlet and periodic boundary 

conditions, because in these cases M discrete eigenvectors matches with grid values 

of the first M eigenfunctions of the differential problem. 

For the first time DSES idea is mentioned in the literature in 1975 by 

Ukrainian scientists V. Makarov and I. Gavrilyuk  in work " On constructing the 

difference net circuits with the exact spectrum" Dopov. Acad. Nauk Ukr. RSR, Ser. A 

p. 1077-1080, 1975 (in Ukrainian), looking at a linear heat conduction problems with 

homogeneous Dirichlet boundary conditions. It was possible to transfer this method to 

various problems of mathematical physics with different boundary conditions 

(Dirichlet, Robin and periodic) [1,4,5,6,7,8,23,25,28,31,33]. Efficiency of the method 

was compared with the standard differential approximation schemes of the 2
nd

 order 



(DS-2) and higher order difference approximation schemes (DS-p, p = 4, 6, 8) for 

problems with periodic condition. 

Especially efficient it was for DSES problems with periodic boundary 

conditions. In the duration of the project doctoral dissertation "Numerical modelling 

of mathematical physics problems with periodic boundary conditions" of LU student 

Aigars Gedroics was designed, which will be defended in 2013. His research results, 

together with co-authors have been published in five papers [2,3,7,16,30] (article [33] 

accepted for publication), and 10 theses [1,6,13,14,24,23,25,27, 28]. Various ordinary 

and partial differential equation problems with Dirichlet boundary conditions using 

DSES have been researched by Master of Faculty of Physics and Mathematics Sergejs 

Rogovs. As a result a publication with co-author [15] has been published (article [33] 

accepted for publication) and 3 theses [23,25,28]. The second Master Maksims 

Marinaki by solving the problem of fluid flowing around periodically positioned 

cylinder in magnetic field is co-author of the article [30], paper [32] submitted for 

publication, as well as a theses [27]. DSES ideas and examples of usage will be 

included in the teaching material for Masers of the Faculty of Physics and 

Mathematics [34]. 

Another direction of research is related to the development of numerical 

methods for engineering-type calculations, by reducing the complex mathematical 

models to simpler. The development of these algorithms is based on different 

mathematical method applications and proves. The developed numerical methods are 

applied in sub-activity No. 4.4.1. “Unconventional use of classical mathematical 

physics methods in mathematical modelling" for various engineering problems. In the 

project today's technology-specific processes were researched and modelled. From the 

practice in these models often appear large or small geometrical or physical 

parameters, jumps of differential equation coefficients, etc. The direct and inverse 

problems of mathematical physics nowadays must be practically and theoretically 

analyzed, taking into account their specificities. Had to develop special methods and 

approaches suitable for specific class of problems, because the general analytical and 

numerical methods are not always sufficiently effective and accurate. For analysis and 

modification of the formulation and exact and approximated solution construction for 

problems of mathematical physics, exact and approximated (including final 

differences) analytical and numerical methods were used. This includes modelling of 

applied problems which are important in the practice: intensive steel quenching 

technology – theoretical models, analysis and exact and approximated solutions 

[5,8,17]; modelling of new type energy devices based on the principles of vortex 

effect [2]; modelling of the metal particles in peat layers [14,16,24]; motion modelling 

of extended magnetized droplet and thread in rotating magnetic field 

[9,10,11,18,19,26,29]; nonlinear heat flow modelling [7]; the MHD fluid flow models 

– creation, analysis, calculations [3,22,27,30,32], the electron flow model in gyrotron – 

creation, analysis, and numerical simulations [12,20,21]. 

In the engineering-type calculations together with special difference schemes 

the conservative averaging method of prof. Andris Buikis were also used. This can 

reduce the dimension of the original problem [14,16,24,33]. 

The research results are presented in 13 publications [2,3,7,8,9,15,16,17,18,19, 

20,21,30], one article is accepted for publication [33], 3 have been submitted for 

publication [29, 31.32]. Totally 16 papers presented: 9 papers in international MMA 

(Mathematical Modeling and Analysis) Conference - Druskininkai (Lithuania) 2010 

May 26-29 [5], Sigulda (Latvia) 2011 May 25-28 [10,11,12,13,14], Tallinn (Estonia) 

2012 June 6- 9 [25,26,27], 1 paper in 6th International NAA'12 (Numerical Analysis 



and Applications) conference Lozenetz (Bulgaria) 2012 June 15-20 [28], 1 paper in 

16th International ICDA2010 (Difference Equations and Applications) conference in 

Riga in 2010 June 19-23 [6], 2 reports in the 8
th

 Latvian Mathematics Conference 

2010 Valmiera April 9-10 [1,4] 3 reports in the 9
th

 Jelgava Latvian Mathematics 

Conference 2012 March 30-31 [22,23,24] (see theses). 

When creating a new type of algorithms for problems with different 

coefficients on the derivatives H. Kalis abstract "The Finite difference schemes with 

exact solution spectrum for some heat transfer problems" was prepared for the 5th 

international NAA'10 conference "Finite-Difference Methods: Theory and 

Applications", Lozenetz (Bulgaria) 2010 June 28—July 2. The author, however, did 

not participate in the conference as abstracts did not reach the recipient. 

 

Detailed outline of study 
 

Further basing on the published papers and theses results of the studies will be 

described and analyzed for new and improved algorithms and concrete applied 

problems in mathematical modelling. 

 
1. Difference schemes with exact spectrum (DSES) 

[1,4,6,13,15,23,25,28,31,33]. 

 

We will look at three types of boundary conditions while developing DSES as an 

effective method for solving ordinary and partial differential problems: periodic, 

Dirichlet, Robin and homogeneous boundary conditions. 

 

1.1. Problems with periodic boundary conditions [13,33] 
When building DSES with periodic boundary conditions it is important to use 

the advantages of using a circulant matrix. 

It is easy to create a MATLAB algorithms with circulant matrices – finding inverse 

matrix, matrix multiplication, and matrix multiplication by a vector. 

Circulant matrix with dimensions nxn in matrix form 
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               )

 
 

 

It can be expressed with its first row: 

                          . 
For these matrices simplified algorithms for matrix operations are possible that can be 

performed in a relatively small computation time – add, multiply, finding the inverse 

matrix. Also finding eigenvalues and eigenvectors of matrix is simplified. 

Sum and product of such matrices produces a circulant matrix. Also, if the inverse 

matrix for the circulant matrix exists, it is also circulant. 

MATLAB programs with definition of circulant matrix and their operations – 

addition, multiplication and calculating the inverse matrix – was created by doctoral 

student at the University of Latvia Aigars Gedroics. 

 The eigenvalues of matrix A can be expressed in form      ,        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

where   is primitive nth root of unity – solution        of equation       , 



     ∑   
   

 

   

 

Eigenvectors of the matrix are in form                      ,        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Circulant matrices has also a property 

           , 

where   is matrix which consists of matrix   eigenvectors in columns of the matrix, 

matrix   – diagonal matrix with eigenvalues on the diagonal. Matrix    is complex 

conjugate matrix of  . 

As an example we can look at Poisson‘s 1D equation problem with periodic boundary 

conditions: 

                                  . 

This problem always has a unique solution for any Riemann integrable function     , 

if the following condition is fulfilled 

∫        

 

 

 

and the value of the unknown function      is fixed in some point: 

                  . 
It is possible to express solution of the problem analytically. 

In the beginning it is possible to find a solution for a problem when      and 

    . This is in form 
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In the result of simple transformation we can find the solution also for the general 

problem 

      ̅     ̅        
We will use the 3-point stencil for the problem by approximating the second order 

derivatives with central differential: 
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The original problem with N algebraic equations (DS-2), can be rewritten in the form 

    , 

where A is matrix with dimensions NxN 
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where y, f are column-vectors of order N, yj ≈u(xj ) fj =f(xj ). 

The matrix A is circulant, i.e. it can be defined by its first row and the rest of the rows 

are copies of the first row shifted by one element. Therefore, it can be described in 

form: 

  
 

  
                   

From the spectral problem of matrix A it follows that the eigenvalues are 

   
 

  
    

  

 
 

and     can be expressed in form 
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Scalar product of vector    and complex conjugate vector   
* 

equals with 

Kronecker delta .
,mk

  

From property of circulant matrices, matrix   can be expressed in the form   
    . 

By using this expression, problem      can be transformed in the form    
   , where     . 

For the indices        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values of the new problem can be solved for unknown 

argument  : 

   
 

  

       

For     we get an expression  which is consistent with the condition of problem’s 

solution existence ∫         
 

 
. That’s why we can choose vN =0. 

The continuous spectral problem has eigenvalues 
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and orthonormal eigenfunctions 
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By transforming the   in the form  
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we can express the exact solution in form of complex series 
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where a0 = b0  = 0. 

When building DSES in matrix A=WDW
*
 diagonal matrix D elements dk=μk are 

replaced with eigenvalues of the continuous problem in such way 

1) dk = λk  when k = 1, 2, … , N/2, 

2) dk = λN- k when k = N/2, …, N-1, dN = 0. 

Periodic function f (x) has the complex projection, which can be converted into real 

form 
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 For periodic vector b0 =0. 

Thus, algebraic systems or DS-2 solution (vector) y may be made discrete Fourier 

series 
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Replacing the discrete eigenvalues μk including the N / 2 consecutive eigenvalues λk 

we get the Fourier series with N / 2 members (summands), which coincides with 

DSES algorithm. 

 

These formulas can be easily used in analytical transformations, solving 

boundary problems with periodic boundary conditions. Mixed problems for partial 

differential equations, when using the method of straight lines, can be reduced to 

systems of ordinary differential equations, which can be solved analytically using the 

above-described spectral method and DSES. 

Building higher-order DS-p with periodic conditions, we look at 

approximations derivative u'' (xj) using smooth grid xj = jh with p +1 point stencil (xj-

p / 2, ..., xj-1, xj, xj +1 , ..., xj + p / 2). By using the method of undetermined 

coefficients with unknown coefficients Ck, Ep we look at approximation of order O 

(hp) in the form: 

u''(xj )= 1/h 
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(ψj  )/(p+2)!, xj-p/2 < ψj  < xj+p/2 .  

We get such coefficients: 

 

1) p=2: C1=1,C0=-2, E2=-2, 

2) p=4: C1=4/3, C2=-1/12, C0= -5/2, E4=8, 

3) p=6: C1=3/2, C2=-3/20, C3= 1/90, C0= -49\18, E6=-72, etc. 

Matrix A is in circulant form 

A=1/h
2
 [C0, C1,. . . , Cp/2,0, . . . , 0,Cp/2, Cp/2-1,. . . , C2, C1] 

with eigenvalues 
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General formulas for DS-p approximation of order O(h
p
) are given in [1,13,33]. 

A matrix can be rewritten in the form A = WDW *, where eigenvectors remain 

(matrix W), but diagonal matrix contains the corresponding eigenvalues of the 

approximation sequence. This allows to get algorithms of a higher approximation DS-

p, p = 2,4, ... which can be compared to DSES. 

Similarly DS-2 and DSES algorithms are created for 2D Poisson, heat transfer, 

and wave-equation models, the result of using the method of lines, Cauchy problem of 

ordinary differential equations system. In the linear case analytical expressions may 

be obtained, but nonlinear problems can be easily solved numerically with MATLAB. 

 

1.2. Problems with Dirichlet boundary conditions [15]. 

Many mathematical physics problems with Dirichlet boundary conditions must be 

solved, which can be easily transformed into a homogeneous problems. When 

building DSES will look at the previously used example: 1D Poisson equation with 

Dirichlet boundary conditions: 

 

                            -u”(x) = f(x), u(0) = u(L) = 0. 

Solution for this problem 
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Continuous spectral problem has eigenvalues 
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We can express the exact solution in Fourier series: 
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Discrete problem DS-2 with N-1 algebraic equations can be rewritten in the form 

     
where matrix A is standard 3-dioganal matrix with elements 1/h
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placing these vectors in matrix W of order N-1 we gain WW = W
2  

= E – identity 

matrix. After matrix property, matrix A can be expressed in the form       , 

where W
* 
=W. 

By using this expression DS-2 or problem      transform in the form       , 

where     . For all        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  we can find coordinates of vector  : 

   
 

  

       

By building DSES from DS-2 in matrix A=WDW diagonal matrix D elements dk = μk 

are replaced with continuous problem’s first N-1 eigenvalues λk. 
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Thus by expressing u(x) in Fourier series we gain 
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That’s why components of solution vector y (DS-2) can be expressed in discrete 

Fourier series 
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k =ck /μk. 

Replacing the discrete eigenvalues μk including the N-1 continuous eigenvalues λk we 

get the Fourier series with N-1 members (summands), which matches with DSES 

algorithm. 

DSES method is more stable compared to the DS-2, as the eigenvalues are larger λk > 

μk. 

These formulas can be easily used in analytical transformations, solving problems 

with Dirichlet boundary conditions. Mixed type problems of partial differential 

equations by using the method of lines can be reduced to systems of ordinary 

differential equations, which can be solved analytically using the above-described 

spectral method for creating DSES algorithms [15]. 

 

1.3. Problems with Robin boundary conditions [4,8,17]. 

DSES can be created for problems with Robin boundary conditions as well. 

Here are known difficulties when solving the spectral problems, because eigenvalues 

can be found only numerically from the corresponding transcendental equations. 

Eigenvalues and eigenvectors can be written analytical formulas depending on 

numerically obtained eigenvalues, but these are not matching in the points of 

homogenous grid. This might result in some inaccuracies when DSES are created and 

schemes might be not so efficient as in case with Dirichlet boundary conditions. 

Difficulties are raised in finding of the last discrete eigenvalues μN , μN+1, because the 

corresponding transcendental equations in the literature are not correct (see A. 

Samarsky „Difference Scheme Theory“, 1977, in Russian). That’s why these 

equations had to be recreated [17]. 

Similarly as in previous cases we look into Poisson’s equation with Robin 

boundary conditions in the following form: 

- u''(x) =f(x) , u'(0) – σ1 u(0) = 0, u'(L) + σ2  u(L) =0, σ1 >0, σ2 >0. 

The corresponding discrete algorithm (DS) is: 
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Further we get difference equations in form of algebraic system (DS-2) 

                                                  Ay=f 

with corresponding 3-diagonal matrix A of order M=N+1 with elements on the first 

row is  1/ h
2 

 { 2+2 h σ1 ,  -2 , 0…0}, the next one 1/ h
2 

 { -1, 2,-1} and the last – 

1/ h
2 

 { 0,…, 0, -2, 2+2 σ2 }, where y, f are column-vectors of order N+1 with 

elements yj , f(xj ), j=0,…, N. 

By using scalar product of 2 vectoes y1 and y2 

[y1,y2]=h 




1

1

21

N

j

jj
yy  + 0.5 h (y10  y20   + y1N  y2N  ) we can show that [Ay,y] > 

0. 

For the corresponding discrete spectral problem Aw
k 

 =μ k  w
k 

 , k=1,…,N+1  

such soution exists (A. Samarsky, 1977) 

w
k 

 =1/Ck  (1/ √2 w0
k 

 , w1
k 
 , . . . ,wN-1

k 
 ,1/√2 wN 

k 
 )

 T 
 , 

μk  =4/h
2
   sin 

2 
 (pk h/2),  

where wj 
k 

 =sin(pk h)/h  cos(pk xj ) + σ1 sin(pk xj ),j=0,…,N is eigenvector w
k
   

components, pk  is positive roots for these transcendental equation: 
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Solution can be expressed in Fourier series form 
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DSES and DS-2  matrix  A is represented in form A=WDW
T
, where D is diagonal 

matrix D with first N+1 eigenvalues of continuous problem dk = λk, k=1,…,N+1. If dk 

= μk we get DS-2 with 3-diagonal matrix A. 

If σ1= σ2=∞ we gain problem with Dirichlet boundary conditions. 

For mixed type problems and boundary value problems of partial differencial 

equations, by using the method of lines, can be reduced to ordinary differencial 

equation system which can be solved analytically using spectral method mentioned 

above, by creating DSES algorithms [17]. 

 

      2. Hyperbolic heat conduction equation mathematical modeling of steel 

quenching process [5,8,17]. 

 

Steel quenching process is modelled actively in Latvia and the USA, which 

was proposed to be described as hyperbolic heat conduction equation by prof. Andris 

Buikis in 2005. The idea has become the core of international studies not only in 

Latvia but also with the participation of U.S., Ukrainian, Croatian and Greek scholars. 

Steel hardening mathematical model – a mixed problem of hyperbolic heat 

conduction equation was solved numerically and analytically using the DS-2 and the 

DSES methods which helps to describe the intensive steel quenching in salty water, 

not oil, as it is done in classical hardening situation. H. Kalis together with A. Buikis 

by simulation of steel quenching process and by solving direct and inverse problems 

of hyperbolic heat conduction equation had led to results that triggered the interest of 

foreign physicists [5]. 

Mixed type problem for steel plate case is in the following form: 
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Here T is temperature, κ is  

 

Here T is the temperature, κ is the thermal conductivity coefficient, α0, α1 heat 

transfer coefficients with the external environment with the temperatures Tl, Tr, τ is 

the relaxation factor, which turns parabolic heat conduction equation into the 

hyperbolic when it differs from a zero value. In practice, the heat value of the velocity 

at the beginning V0(x) is unknown, but the known are initial temperature T0(x) and 

the final temperature T(x, tf) = Tb(x). Therefore, to find the temperature distribution 



T(x, t) and V0(x) need to solve inverse problem, which is ill posed, i.e. improper. 

Analytical solution for the problem in the form of final (discrete) Fourier series when 

method of lines, spectral projections DS-2 and DSES are used, allows to find the 

series’ coefficients for function V0(x) and find the temperature distribution in the steel 

plate. Similarly the problem can be solved in the sphere and the sphere with a hole in 

the case of radial symmetry. In the 3D case (a piece of steel in the form of a 

polyhedron) it is possible to reduce problem to the problem of the plate with A. Buikis 

conservative averaging method. Pictures (1., 2.) show the maximum temperatures 

depending on the relaxation time at different rates τ = 0.1, τ = 0.5, where tf = 1 

Tb (x) = Tl = Tr = 0, L = 1, T0 = 600, α0 = 0, α1 = 0.071. Accordingly we obtain  

V0 = -6000.25, V0 = -1387.8. 

 
Figure 1(τ=0.1) 

 
Figure 2 (τ=0.5) 

To test the effectiveness of DSES two problems are solved – the wave equation 

(without an additive 
t

T




, τ = 1) and hyperbolic heat conduction equation (τ = 0.1) 

with Dirichlet boundary conditions (α0 = α1 = ∞) Tl = 1, Tr = 0, T0(x) = V0(x) = 0. 

Figures 3, 4 show the jump of functions T(x, tf) at the time t = 0.2, solving the wave 

equation with DSES and DS-2, where N = 30 (see DS normal fluctuations in the 

field). 

 
Figure 3 (τ=1, DSES) 

 
Figure 4 (τ=1, DS-2) 

Similarly in figures 5 and 6 the results are shown for solutions of hyperbolic heat 

transfer equation with DS-2 and DSES when N=200 (can see the DS-2 oscillations in 

the jump point). 
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Figure 5 (τ=0.1, DS-2) 

 
Figure 6 (τ=0.1, DSES) 

In [17] results are obtained for perforated ball tempering also. It shows DSES 

advantages over method with Fourier series (see for additional examples in [17]). 

 

     3. New type power plant mathematical modeling [2]. 

 

Transformers, motors and generators can be described by a common feature of 

the electron flow in electromagnetic systems. Analog connections are found in 

liquids, gases, whirlwinds in a storm and other streams. These vortices distributions 

can be used for a new type of power plant (J. Schatz 2003, I.Rechenberg 1988). In 

hydrodynamics (ideal fluid) velocity field dependence of the vortex field is 

characterized similarly as in electrodynamics – Biot-Savart law. In this approximation 

the different vortex (circular, spiral, etc.) affect to the speed of distribution inside the 

pipe, duct and cone was calculated (A.Buiķis, H.Kalis, J. Schatz 2005, 2006). 

Actual and interesting problem is the heating of buildings with a clean, compact, 

effective devices. One of the earliest forms of modern applications is the 

transformation of AC electrical energy into heat energy. In [2] the authors study a 

single mathematical model of the device. It's a long cylinder filled with 

incompressible viscous fluid squeezing (the electrolyte), which is parallel to the 

cylinder axis placed metal rods (electrolyte), which is supplied AC with different 

phases (see the actual device with 6 electrodes in Figure 7). Mathematical model 

assumes that the cylinder of radius R is infinitely long, the electrodes are placed in the 

inner cylinder of radius r0 inside and the 2D temperature distribution and fluid flow 

between two coaxial cylinders of cross-section is investigated (see device model in 

Figure 8). In the previous works of A. Buikis and H. Kalis (CMAM, 2002, 2(3), p. 

247-251; MHD,2004,40(1), p.77-90; MMA, 2005, 10(1), p. 9-18) heat generators 

were modelled wit 6 and 9 circle-form electrodes which were wound around the 

cylinder surface. 3D flow in finite cylinder was modelled using software „Fluent” in 

work A.Buikis, L. Buligins, H.Kalis, MMA,2009,14(1), p.1-9. 



 
Figure 7 (real device) 

 
Figure 8 (model) 

Stationary Navier–Stokes equation system in polar coordinates is used together with 

electromagnetic (Lorence) force which is caused by AC flow through the electrodes. 

By calculating the source members in hydrodynamics and heat conduction equations, 

excluding pressure and by introducing dimensionless temperature T(r, φ) and the 

hydrodynamic power ψ (r, φ) function problem is reduced to the problem of the 

border values of two partial differential equations with periodic conditions for the 

angle φ: 
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where KH , KT  are source member parameters, <f> – averaged value of 

electrodynamics forces in time, < jz 
2 

> – averaged value of current density, Pr – 

Prandtl number, η=r0/R – proportion of cylinder radiuses, J – Jakobian, Δ – Laplace 

operator. An original methodology for calculating the source function was created. By 

using the lower relaxation method and operations of the circular matrices the 

algorithm is created. With its help you can determine the maximum cylinder 

temperature and vortex breakdown dependency on the number of electrodes (3, 6 or 

9), position and shift of the AC phases. For example in case with 6 electrodes results 

are shown in Figure 9 (vortex breakdown) and 10 (temperature distribution with the 

maximum temperature of 10.56). This temperature was gained with phase shift 60° 

and electrode positioning [1,2,3,4,5,6] what is shown in Figure 8. If phase shift is 

120°, maximal temperature is 8.22 units for electrode positioning [2,4,6,1,3,5]. 



 
Figure 9 (vortex breakdown) 

 
Figure 10 (temperatures) 

 

4. Mathematical modelling of metal particles in peat layers [14,16,24]. 

 

By simulating three peat layers metal Ca and Fe concentrations in peat layers 

were studied, solving 3D boundary value diffusion equation with piecewise constant 

coefficients in layers. In the difference scheme DS-2 created with the periodic 

conditions in the given direction, circular matrix algorithms are used, which simplifies 

the calculations. Numerical results are compared to experiments. Before this 2 layers 

of peat were modelled by H.Kalis, E.Teirumnieks, E. Teirumnieka, I.Kangro in work 

„Proc. of the 7-th int. scientific practical  conference”Environment. Technology.  

Resources.”,Rezekne higher education institution, June, 2009, p. 249-253. 

Metal diffusion process in peat has been modelled in 3D parallelepiped 

Ω= { (x,y,z) : 0 < x <  l ,0 < y < L, 0 <  z <Z }. 

Region Ω consists of N layers. Stationary 3D diffusion problem is modelled with 

piecewise constant coefficients in the layers Dx, Dy, Dz. 

Ωi ={(x,y,z): x  (0,l), y (0,L),z   (z i-1 ,zi ), i=1,…,N}, 

where Hi =zi –zi-1  is height of the layer, z0 =0, zN =Z.   

Must find the concentration ci = ci(x, y, z) distribution in each layer Ωi, by addressing 

the border value problem for partial differential equations (PDE) - diffusion equation: 
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where Ca(x, y) is given concentration distribution. 

Problem with 3 layers (N=3, see figure 11) is solved using A. Buikis implemented 

constervative averaging method and DS-2 methods, by reducing the 3D problem to 

2D PDE system with circular matrices in x direction. The ratio of diffusion 

coefficients is determined from the 1D diffusion equation z-direction analytic solution 
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on the basis of experimental measurements of peat interlayers. In figure 12 

concentration breakdown can be seen in z direction, other results are in [16]. 

 
Figure 11 (3 peat layer scheme) 

 
Figure 12 (concentration in z 

direction for 3 fixed points) 

 

5. Magnetized elongated droplet and thread motion simulation in rotating 

magnetic field [9,10,11,18,19,26,29] 

 

In the result of fruitful cooperation with the physics professor. A.Cebers 3 articles 

[9,18,19] has been published international journals and article [29] was submitted for 

publication on the ferromagnetic particles – elongated droplet motion in external 

rotating magnetic field, using the droplet dynamics and curvature equations. Process 

is described in 2D nonlinear parabolic-type partial differential equations, which are 

handled by the numerical method of lines, replacing the second or the fourth order 

derivatives of the spatial variable with the 2nd order approximation of the finite 

differences. Equations of the second order derivatives are formed using DS-2, DSES, 

and ordinary differential equation systems at time t with equation count of 100 - 200, 

carried out with the software MATLAB. 

 

5.1. Modeling of elongated ferromagnetic droplet motion in external rotating 

magnetic field [10,19,29] 

Stretched droplet motion in external rotating magnetic field is described by 

non-linear parabolic equation with a variable diffusion coefficient signs (see Figure 

13 where diffusion coefficient F 'is the derivative of the function F). Since the values 

of this coefficient equals with zero in some places (or even negative), the received 

solution is with jumps. The solution can be obtained by modifying the equation by 

introducing additional summand of regularization, which contains higher-order partial 

derivatives. Regularization was got by replacement of non-monotonic sign changing 

diffusion coefficient F 'with a modified positive function (see Figure 14). Using DSES 

and MATLAB solver "ode15s" we managed to calculate this problem directly without 

regularization. From the results different magnetic droplet configurations and shapes 

are drawn (S-shaped, 8-shaped and spiral). 

Stretched droplet motion is described with the following dimensionless 

differential equation 
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where F(β) = 1/Bm β + sin(2 β) is nonlinear function (Figure 13), β(l, t) is the shift of 

phase, what is formed by the local tangent of center line of the droplet and abscissa 



axis, ω is the angular frequency, τ is a time scale factor, ε is a small factor (circa 10
-4

), 

Bm is the magnetic Bond number, l is the arc length, 0 < l < L, t – time, 0 < t < tf. 

Regularization member with ε is added from physics consideration. Function F(β) is 

not monotonic when Bm > 0.5. Equation comes together with boundary conditions 
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and initial condition )()0,(
0

xx    where )(
0

x  is a given function (usually 

0)(
0

x  – initial form of droplet is straight). 

When ε = 0 we get ill posed problem. Further we look into droplet with length L = 2. 

 

 

 
Figure 13 (function F) 

 
Figure 14 (modified function F) 

 

The form of droplet we get by integrating these equations 
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The integration constants are determined from the condition that the droplet center of 

mass remains stationary. 

Stationary solution )( l
s

  is found using boundary conditions 

0)2()0( 
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  from the transcendental equation in form  )2(5.0))(( lllF
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Maximal value of 
m

  we get from the equation .5.0)(  
m

F  Solution 0),( tl  

is symmetrical according to l=1. Angle β as function dependent on arch length l is not 

continuous when ω > 2 F(β0 ) when β0 is root of equation F'(β )=0 (maximal value of 

function F). Value wc = (ω)0 = 2 F(β0) defines the critical frequency. Figures 15 and 

16 show stationary solution with 3 jumps (ω=15) and one jump (ω=5). 



 
Figure 15 (stationary solution ω=15) 

 
Figure 16 (stationary solution ω=5) 

 

Modified function F (Figure 14) is monotone with derivatives with limited 

values 0 < F '(β) <2 +1 / Bm and we can use approximate assessments for solution of 

the equation with ε = 0 and it belongs to Sobolev space for each fixed time unit t. 

The given problem is solved with MATLAB software, by using the method of lines 

and finite difference methods in space and approximating spatial derivatives with 

central differences with approximation of the second order (DS-2). 

We inspect homogenous grid in space . 

We obtain the initial values of the discrete problem in the form of system of N-1 

ordinary differential equations 

(E+ε B) 
dt

tdU )(
+ A F(U(t)) =G,  U(0)= U0 , 

where E is identity matrix, A is standard 3 diagonal matrix of order N-1 with elements 

1/ h 2{-1;2;-1}, which approximate the second order derivative 
2
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B=A*A is 5-diagonal matrix of order N-1 with elements 1/ h
4
  {1;-4; 6; -4;1} which 

approximates the derivative of the 4
th

 order 
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U(t), U 0 , F(U), G are column-vectors of the order N-1 with elements 

  uj(t) ≈ β(lj, t),  fj (u) ≈ F(uj(t)), gj = ω, j = 1,…, N-1. 

Differential equation can be expressed in the form 

dt

tdU )(
=  (E+ε B)
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 (G  - A F(U(t))). 

By building difference scheme with exact spectrum (DSES) matrices A and A
2
 are 

replaced by their spectral representations WDW and WD
2
W, where W = W

-1
 is a 

symmetric orthogonal matrix with elements wj, k = √2 / N sin(π jk / N), j, k = 1,...,N-1, 

and the diagonal matrix D contains N-1 eigenvalues of the differential operator
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which are in form dk = (πk / 2)
2
 (ordinary difference scheme has dk = 4/h

2
 sin

2
(0.5 πk / 

N)). 

 Numerical results were obtained using Matlab, when Bm = 1.5, ω  = 5, 8, 15, 

tf = 3, 5, 6, ε = 0, 10-4. Moment of time tf is the time when the non-stationary solution 

has converged to stationary solution. With the increase of frequency droplet gets more 
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spiral shape. Figures 17 and 18 show solution and the droplet shape dynamics, when ε 

= 10
-4

, ω  = 15. 

 
Figure 17 (β dynamics) 

 
Figure 18 (dynamics of form) 

 

In [29 hysteresis phenomenon] is modeled, which occurs by changing the frequency 

of the field. 

 

5.2. Motion modeling of ferromagnetic elastic thread (bar) in external rotating 

magnetic field, the dynamics and curvature equations [9,11,18] 

Let’s denote partial derivative 
l

tlq



 ),(
 of function q(l, t) with q’(l, t). By using 

expressions of force and momentum, flexible bar velocity equation v(l,t) =
t

tlr



 ),(
 in 

2D thread section can be written in form 

ζv = – A0 r
(4)

 - M n' + ( 
~

t)', 

where r = (x, y, 0) are 2D vector coordinates, t, n are the vectors of center line tangent 

and the normal of the elastic thread, 

t=(x', y',0), n=(-y', x',0), 

r 
(4)

 is partial forth order derivative of variable l, 


~

 =Λ -1.5 A0  K
2
, K=K(l,t) is center line curvature, 

Λ = Λ (l,t) are Lagrange multipliers, 

A0 is curvature modulus, 

ζ is the hydrodynamic drag coefficient, 

M is a dissipative torque for 1 length unit of thread. 

 To solve the equations of 3D thread dynamics, we introduce homogenous grid 

with N +1 points lk and step h and arc variable l. From assumption that thread cannot 

be stretched, constraint in the form of equation gk = (rk+1 – rk)
2
 = h

2
, k = 1, ..., N 

follows. 

By introducing Jakobian matrix J of order N * 2 (N+1) with elements 
j

k

r

g


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that J.v=0. 

By using projection operation P=E-J
T
 (J J 

T
)
-1

J, (E is identity matrix) we discretize 

dynamics equations with central differences without summand ( 
~

t)' in the form of 

ordinary differential equation system with N + 1 equations. It can be solved 

numerically with Matlab for various magneto-elastic number Cm=M L
2
 / A0 [9]. 

Figure 19 shows dynamics of the forms when Cm = 300. 



 
Figure 19 (dynamics of form, Cm = 300, t < 0.49) 

 

For small values of Cm thread forms S-type form, which rotates around the 

center of mass in the direction of the applied torque. For large values of Cm loops are 

formed at the free ends of the thread (Figure 19), which rotates in direction of the 

applied torque in the stationary case. 

Let us review the internal dynamics of the magnetic thread curves, using the 

curvature equations. Force vector F is in the following expression: F = – A0 r''' – M n 

+ 
~

t. 

From the Frenet formulas t' = – K n, n' = K t and expressions 

t=r ', n t=0,  nn=1, v= vn n + vt t, (vn, vt are the normal and tangential velocity 

components), we get curvature equations in the following form 
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By transforming it we get 
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From the condition that the thread cannot be stretched 

vt ' =- A0 K K'' -0.5 A0 K
4
 + Λ  K

2
, equation follows 
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and thread curvature equation takes the form 
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Transforming the equations in dimensionless form we obtain two partial equations: 
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If both ends of the thread l = 0 and l = 1 are free, we get boundary conditions: 

K(0,t)= Λ  (0,t)=K(1,t)= Λ  (1,t)=0, K'(0,t)=K'(1,t)= Cm. 

If only one thread end l = 0 is free, then K(0,t)= Λ (0,t)=0, K'(0,t)= Cm,  

K'(1,t)= Λ'(1,t)=K''(1,t)=0. 

The form of the thread is found from Frenet formulas 

x ''= K  y ',  y '' = -K x '. 

 Stationary solution x = x (l), y = y (l) the initial condition at l = 0 (fixed end) is 

x(0) = y(0) = 0, y'(0) = 0, x'(0) = 1. In order to compare the dynamics of the thread, 

these conditions are chosen from the results in the fixed time, obtained by integrating 

directly the equations of motion. Good matching results are received (see Figure 20 

when Cm = 50; results obtained integrating the equations of motion directly are drawn 

with solid lines, but dashed shapes shows forms derived from curvature equations). 

Figure 21 shows the stationary solution, which is obtained using values Cm = 9, 19, 

29, 39, 49, 59. The calculations in Matlab space discretization in homogenous grid is 

used with lj = (j-1) h, h = 1 / N, j = 1, ..., N +1, and a special finite difference scheme 

for approximation of Lagrange multipliers [9]. 

 
               Figure 20 

 
                  Figure 21 

 

3. Modeling of nonlinear heat transfer [7] 

 

In [7] we dealt with a non-linear heat transfer equation which arises in modeling of 

the "blow-up" dissipative 1D and 2D heat flows between two coaxial cylinders. These 

flows have been studied extensively in 1970–1990 by academician A.Samarsky and 

works of his scholars, for example in the book “Blow-up in Quasilinear Parabolic 

Equations" 1987, in Russian. We consider the problem of 2D two-layer medium 

between the two coaxial cylinders. Using the method of lines, the DS and the DSES 

with circulant matrices, the mixed type problem is reduced to the initial value problem 

of non-linear ordinary differential equations system, which is solved numerically by 

iterations to obtain the stationary solutions. 1D mixed problem in polar coordinates is 

in the following form: 
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where σ ≥ 0, β > 0, λ > 0, a ≥ 0 are constant parameters, u0(r) ≥ 0 is a given function. 

If environment is not homogeneous, but is composed of several layers of radius r 

direction, the coefficients λ, a can be different. In work of H.Kalis, I.Kangro, 



A.Gedroics, IJPAM, vol. 71, no. 1, 2009, 575-592, this problem is solved for a single 

layer in Cartesian coordinates. In [7] polar coordinates with radial symmetry are used, 

theoretical estimates are derived for time moment when the solution becomes 

stationary, blows up (in finite time interval the solution tends to infinity) for 

homogeneous and 2-layer mediums. 

For 2D area {(r, φ, z): r0 < r < R, 0 ≤ φ ≤ 2 π} with heat conductive material at 

a constant temperature u = 0 on the cylinder surfaces in layered medium, we get 

mixed type problem for temperature function u = u (r, φ, t) ≥ 0, which satisfies the 

nonlinear heat transfer equation: 
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In each layer parameters λ, a are piecewise constant and conditions of continuously on 

the layer boundaries, Δ is the Laplace operator in polar coordinates, g(u) = u σ +1, 

f(u) = uβ. 

In the discrete case for two layers (λ1 = 100, λ2 = 1, r0 = 0.2, R = 1, r1 = 0.6 – 

boundary position of layers), using Gaussian eliminating (factorization) method with 

circulant matrices, we obtain the stationary solution (Figure 22), for σ = 3, β = 4, a = 

59.2001 = μ1 (μ1 is the first eigenvalue of the Laplace operator for two layers with 

radial symmetry) and "blow-up" solution (Figure 23), for σ = 3, β = 5 a = 500, which 

locally tends to infinity in a fixed r = 0.75 at time t = 32.44097 (figure shows two time 

moments T1 = 32.44095 and T2 = 32.44096 with doesn’t differ much, but the 

temperature is changing very fast). 

Theoretically and numerically is proved in the work that: 

1) when β < σ + 1, the solution tends to zero for all a > 0, 

2) when β = σ + 1, a < μ1, the solution tends to zero, a = μ1, then we obtain the 

stationary solution different from zero, a > μ1, then the solution tends to 

infinity globally, 

3) when β > σ + 1, for sufficiently large values of a solution in some fixed point 

in time tend to infinity locally, i.e. forms blow-up solution. 

 
                   Figure 22 (σ = 3, β = 4) 

 
                        Figure 23 (σ = 3, β = 5) 

                 
7. MHD flow modeling [3,22,27,30,32] 

 

When stirring an electricity conducting incompressible liquid in magnetic 

field, such as molten liquid metal, in technological applications it is important to 

know it’s structure, vortex generation or loss depending on the parameters in advance. 

In [3], the fluid is located between two infinite coaxial cylinders, the surfaces 

can be rotated. The unit is supplied with different type (homogeneous, radial, axial, 



dipolar) external magnetic field. Process can be described in the so-called non-

inductive approximation when the induced magnetic field is ignored. 

Magnetohydrodynamic (MHD) flow which is caused by an external magnetic field in 

a cylindrical cross-section area is induced and it is calculated with the finite difference 

method using calculation algorithms for circulant matrices. 

The external magnetic field builds radial Fr(r, φ) and azimuthal Fφ(r, φ) 

Lorentz force vector F components. Force F rotor axial vector component causes fluid 

motion with velocity vector V with radial Vr(r, φ) and axial Vφ(r, φ) components 

(Figure 24 with homogenous magnetic field), which is described by the stationary 

Navier-Stokes equations ring (r, φ): r0 < r < R. 

From 2D vector Lorentz force F = J x B in magnetic field with induction 

vector components Br(r, φ), Bφ(r, φ) it can be obtained that Fr = - σ Bφ(Vr Bφ - Vφ Br + 

Ez), Fφ = σ Br(Vr Bφ - Vφ Br + Ez) where Ez = const is the azimuthal component of 

electric field E, J = σ (E + V xB) current density vector, which is determined from 

Ohm's law, σ is the electrical conductivity. Cylinder surfaces r = R and r = r0 rotates at 

a speed Vφ = r0 Ω0 and Vφ = R Ω1, where Ω0, Ω1 are the corresponding angular 

velocities. 

By excluding the the pressure from the Navier-Stokes equations and 

introducing the function of the current ψ in the expressions 
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 order 
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where f is force F rotor axial component, 

J is the Jacobian of two functions, Δ – Laplace operator in polar coordinates, 

Re = U0 R / ν - Reynolds number, S = σ B0
2
 R / (ρ U0) – Stewart number (U0, B0 are 

velocity and magnetic induction characterizing properties, v – kinematic viscosity, ρ – 

density of the fluid). By using finite difference and lower relaxation techniques, by 

calculating biharmonic operator with factorization (Gaussian elimination) method, 

numerical results are obtained depending on the magnetic field type and 

characteristics described by parameters Re and S. In figure 25 vortices can be seen 

among the cylinders in a homogenous magnetic field, where r0 = 0.2, R = 1, Re = 100, 

S = 10, Ω0 = 5, Ω1 = -1 and the inner cylinder is paramagnetic with infinitely large 

relative permeability. 

 
 

 Figure 24 (scheme of device) 

 
Figure 25 (cylinders rotate contrary) 

 

 



In [30] an infinite number of quadratic cylinders positioned periodically are modelled 

which are flown around in 2D with a viscous incompressible electrically conductive 

liquid in homogenous magnetic field. We investigate two different cylinder positions: 

in parallel lines and 2 different shifted parallel rows. By following conditions of 

periodicity and symmetry, 1 section of the 2D region containing 2 cylinders are 

chosen for the calculation (Figure 26 and 27). 

 
 

Figure 26 (on parallel line) 

 
Figure 27 (on 2 parallel lines) 

 

2D dimensionless external magnetic field contains 2 induction vector components: 

Bx = cos(α), By = sin (α), where α is the angle between the Ox-axis and the induction 

vector. Various types of magnetic field are tested: parallel to the Ox-axis (α = 0), 

transverse (α = π / 2) and slope (α = π / 4 and α = 3π / 4). Magnetic field builds 

Lorentz force F two components 

  Fx = - σ Bx (Vx By – Vy Bx + Ez), Fy = σ Bx (Vx By – Vy Bx + Ez) 

where Ez = const is electrical field E axial component, Vx, Vy are the velocity vector 

V components. Vector rot F z-component causes fluid motion, which is described 

with Navier-Stokes equations in Cartesian coordinates. 

When importing power function ψ and illuminating pressure we get system of two 

equations 

 

0= J( ψ,ζ) +Re
-1

 ∆ ζ + S f, ζ = - ∆ ψ, 

 

where f is a z-component of vector rot F, J – Jacobian, ζ – function of the vortices. 

Using the finite difference and lower relaxation techniques, results of calculations and 

several figures are given in the work [30] depending on Reynolds Re, Stewart S 

numbers and homogeneous field direction. 

 

8. Electron flow modeling in gyrotron [12,20,21]. 

 

In works submitted by several authors are studied and numerically modelled 

complex nonlinear Schrödinger-type partial differential equations system that 

describes one or more electron RF field amplitude fluctuation modes f(x, t) in 

gyrotron and transversal orbital momentum p(x, t) depending on time t and x from 

segment [0, L]. Work [20] is designed as a review article of several years of research 

in Euratom and the recent developments in this direction. 

We analyze two versions of the gyrotron resonators: new (after 2008) and the 

old one. High-frequency RF field amplitude f(x, t) of the resonator and the electron 



transversal orbital momentum p(x, t, θ) with parameter θ (0 < θ ≤ 2π) can be described 

by a complex system of differential equations (the new version): 

x

p




 + i (∆ +|p|

2 
-1-gb) p=if(t,x), 

2

2

x

f




-i(1+δ) 

t

f




+(1+0.5(δ +gc) )gd f =(1+δ)(1+gc)

2 
 ) I <p>, 

where i is the imaginary unit, 0 ≤ x ≤ L, t ≥ 0 is the axial and time coordinates, L –

interactive field length, Δ, δ, θ – real constants, I – current, gb(x), gc(x) , gd(x) – 

given real field variable x values, <p> averaged (integral) at θ variable p value. The 

system is accompanied by the initial conditions p(t,0,θ)=exp(iθ),f(0,x)=f0(x), 

and boundary conditions f(0,t)=0,  
x

tLf



 ),(
=-i γ  f(t,L), 

where f0(x) is a given complex function, γ is positive parameter. 

For the old version of gyrotron gb=bc=gd=0. 

It turned out that the approximation in space with central differences (DS-2) 

and the implicit difference scheme is unstable for new version of gyrotron, because 

the solution by decreasing the time step has became oscillating in time and space as 

well (O. Dumbraja numerical experiments 2010). To find the solution’s 

correspondence to physics, the method of lines was used, reducing the partial 

differential equations in time to system of ordinary differential equations and solving 

them with Matlab solvers, where the time step is selected automatically for the given 

precision. Numerical calculations showed that the stationary solution f fluctuations in 

the space really exists (Figure 28), but not in the time (see the other results of the 

work [21]). 

 
                                Figure 28 (stationary solution f) 
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