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1. General Information 

 

             About 30 years ago A. Buikis defined a new class of splines: the integral 

splines. Integral parabolic splines (IPS) firstly were defined in papers of A. Buikis [4] - 

[7]. IPS and accordingly integral rational spline was defined for continuous, pieces 

smooth class of functions, which describes processes in porous media. In paper [8] the 

generalization of IPS is formulated: in paper was proved the existence and uniqueness 

of generalized integral parabolic spline (GIPS). Generalized integral spline describes 

processes in double layered systems, where there is an intermediate layer between both 

layers. Quite often the intermediate layer can be thin, and then with the help of 

conservative averaging method it can be approximated with linear function. In other 

words: the splines approximating integral values is defined, both- in the form of 

polynomial as well as rational, which can also describe the border layers. Their 

advantage is that their definition includes conditions, that they fulfil conservation laws, 

which are accomplished in partial differential equations. They can be used in 

homogeneous media as well as in layered media, and in the cases, where in some places 

there can be leap in solution or its first derivative. But in all cases continuous functions 

were considered, which on the boundary of two layers continuously moves from one 

layer to another. But for the concentration fields in the cases of chemical reaction the 

leap of first kind for function or its derivative is possible. It was made and was reflected 

the paper [9].Here a new, normalized form of both splines is offered. 

                We consider the domain 1
R . Let it be given a piecewise-continuous, 

piecewise-smooth function    , ,U x x a b . Also let it be given, that in the different 

inner points Nix
i

,1,   the function or its first derivative  xU   of the function can 

have a finite jump with Ni
i

,1,   in the case of function    baxxU ,,   and 

NiQ
i

,1,   in the case of function first derivative  xU  . In two figures there are 

shown the geometrical interpretation of the reconstractable piecewise smooth function 

 xU  and its first derivative  xU  . 

      



Also can be mentioned that in the case, when Ni
i

,1,0   we obtain continuous function 

and Likely when 0, 1,
i

Q i N  , then we obtain that the first derivatives is smooth. If 

NiQ
ii

,1,0   can use IPS proposed in [5] - [8]. 

Let it be given a piecewise-continuous and piecewise-smooth function    , ,U x x a b . 

Also let it be given, that in the different inner points Nix
j

,1,   the first derivative  xU   

of the function has a finite jump:  
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Since the function  xU  is continuous on the closed interval  ba , , we additionally have 
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Additionally is given the integral averaged values 
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The interpolation problem consists in approximate reconstruction of the function  xU . This 

procedure is based on conditions (1)-(3) and following general boundary conditions (BC) on 

end points ax  and bx  : 
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This interpolation problem can be solved by polynomial spline IPS, as in the proposed form it 

fulfils integral averaged values (3): 
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For the finding of  12 N  free coefficients, we have the same number of equations (1), (2), 

(4) and (5). We will use the same methodology for finding spline with jump coefficients as it 

was shown in [5] - [7]. Here is proved, that coefficient
i

m can be represented through 

coefficients 
i

e  in two forms:  

a) (forward form) for 1,0  Ni  
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b) (backward form) for Ni ,1  
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The elimination of the coefficients
i

m from these expressions gives for 1,1  Ni  us 

following system regarding the coefficients 
i

e : 
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For the transformation of the BC (4), (5) some additional notations must be used and two 

different cases are distinguished: 

1) 0
0
  (and 0

1
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2) 0
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Following methodology [7], [8] we have obtained boundary conditions from equations (4), (5) 

for the first and last equations: 
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In the case )0(0
10
   we have special formulas for coefficients

0
a and

N
b :

0
1 .

N
a b   In the papers [7], [8] was proposed the representation for coefficients 

i
e of IPS 

through all averaged integral values. This representation shows in explicit form also the 

influence of the BC type and its right hand side on the spline: 

   

Ni

uufufe

N

j

jjiNNiii

,0

,

0

,1

1

10

0



 











       

 (1.12) 

The coefficients in the representation (12) are determinate from three systems of linear 

algebraic equations. 

a) The system for
 0

i
  (shows the impact of BC (4)): 
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b) The system for
 1

i
  (shows the impact of BC (5)): 
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c) The 1N  systems ( Nj ,0 ) for
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2. Multilayered systems  

 

For the multilayered systems the thickness of the layer is small comparing to 

system longitude, therefore the conservative averaging method [10] can be applied 

towards the thickness of layers. As a result a following type of mathematical model is 

obtained: 
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We consider the mathematical model where separate temperatures are averaged by the 

thickness of layers and the special type of parabolic splines [5] – [9] are used for the 

initial mathematical problem simplification. Now, by easiest one-dimensional multi-

layer temperature conduction model, we will show how IPS can be used to simplify 

the initial problem. We consider following heat conduction model with piecewise-

constant coefficients: 
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We introduce in conformity with the method of conservative averaging the integral 

averaged values ( )
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The integration of main equation (6) gives exact consequences: 
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It remains to replace the first term in the right hand side of the equation (10) by the first 

derivative difference  
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As the last step, we use the representation for the spline coefficient
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To this system of ordinary differential equations (ODE) averaged over sub-segments
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So, we have reduced the one-dimensional heat conduction problem with 

discontinuous coefficients for PDE to the system of ODE with continuous 

coefficients. After solving problem (12), (13), we can approximately reconstruct the 

solution of original problem by IPS (2). The approximation error is known. 

Generalized Integral Parabolic Spline. Let it again be given a continuous, piecewise-

smooth function ( ) , [ , ]U x x a b , for which the first derivative ( )U x  has first kind 
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Further, it is known, that on the sub-segments  1 / 2 1
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approximated by linear function. Finally, the BC must be fulfilled. 

In our paper [7], [8] it was shown that there exists exactly one spline fulfilling all mentioned 

conditions. We will seek this spline in the form: 
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 For explicitness of presentation, we consider following one-dimensional heat 

conduction (or diffusion) model with piecewise-constant coefficients: 
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To the differential equations (33) for separate elementary bars and the equations (34) 
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Finally, to choose unique solution, we must add BC for the first and last elementary 

bars and initially conditions for all elements of the multilayer bar: 
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As one can see, the coefficients have discontinuities in 2 N different inner points

1 / 2
, , 1, .. . ,

i i
x x i N


 . 

In technical (or natural) systems, often it may happen that interlayers’ physical and 

geometrical properties fulfil following inequalities:  
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The mathematical modelling in such cases restricts oneself to assumption that interlayers’ 

solution is linear regarding argument x . In this and in next sub-sections we will specifically 

investigate this case.  

The solution of problem (33)-(38) is continuous in closed rectangle    [ , ] [0 , ]x a b t T  

function 
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The integral averaged values ( )
i

u t are introduced in consistency with GIPS property: 
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We integrate the main differential equation (10): 
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We underline that the equality (16) is exact, not approximate consequence of PDE 

(10). Now the approximation will be made by replacing the first term in the right hand 

side with difference of splines’ first derivatives: 
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The substitution of the representation in formula (17) gives approximate equality: 
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Now we substitute the right hand side of formula (17) in the equation (16) and we 

obtain the final form of the averaged differential equation for the elementary bars 

together with averaged initial condition:  
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  (2.19) 

The solution (analytically or numerically) of this Cauchy problem for the system of 

ODE (28) gives us the functions ( ), 0 , .
i

u t i N  This allows us calculate from 

representation (16) all coefficients ,
i i

e m of GIPS and thus reconstruct solution 

( , ), 0 ,
i

U x t i N  for all elementary bars. 

The multi-layered systems for discontinuous piecewise functions was been 

developed Andris Buikis, Margarita Buike, together with Solvita Kostjukova, doctoral 



student. This research was also noticed by other scientists like Prof. Siavash Sohrab 

from U.S. because the spline was suitable for the shockwave analysis.  

The research on the mathematical models of wood fibre and plywood has been 

carried out, where the mentioned integral spline has been applied. The existing 

mathematical models have been inspected by Cepitis et al., Buikis et al., Kang et al. 

and new ones have been developed. Numerical simulations, extensive study of the 

physical non-linear properties as well as the comparison of the models has been 

carried out. 

Another research activity was related to electric systems like automotive fuses and 

insulated wires. R. Vilums obtained doctor’s degree in 2010 regarding this subject. 

The mathematical models of heating of fuses developed with the conservative 

averaging method (CAM) (Vilums (2010), Vilums et al. (2008a and 2008b)) were 

improved, numerically solved and compared with the results obtained by the standard 

finite volume approach (Vilums (2011)). Temperature-dependant physical coefficients 

were used and free heat convection and heat radiation on the surface were considered. 

Numerical implementation of the models was carried out in Maple and in an open-

source C++ library called OpenFOAM, which was used for the finite volume 

calculations. Because OpenFOAM has insufficient documentation in general and none 

in Latvian, several tutorial examples in Latvian have been created which included the 

implementation of the mathematical models of insulated wire and automotive fuse. 

These documents and other useful information collected during the research were 

made available on a web site. 

 

 

 

3. Wall with two fins 

 

In this section we present mathematical three dimensional formulation of a transient 

problem one element with two rectangular fins attached to both sides [13].  

We will use following dimensionless arguments, parameters: 
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and dimensionless temperatures: 
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Heat exchanger consisting of rectangular fins attached on either sides of a plane wall 

 

We have introduced following dimensional thermal and geometrical parameters: k - 

heat conductivity coefficients for the wall, right fin and left fin, )(
0

hh - heat exchange 

coefficient for the right (left) side, B2 – fins width (thickness), L – right fin length, 
1

L

– left fin length, D - thickness of the wall, W -  walls’ width (length), R2 – distance 

between two fins (fin spacing). Further,  tzyx ,,.0

~

  is the surrounding (environment) 

temperature on the left (hot) side (the heat source side) of the wall,  tzyx ,,,

~

  - the 

surrounding temperature on the right (cold - the heat sink side) of the wall and the fin. 

Finally  tzyxV ,,,0

~

,  tzyxV ,,,

~

,  tzyxV ,,,

~

1
 are the dimensional temperatures in the wall, 

right fin and left fin where ( )
a b

T T  are integral averaged environment temperatures 

over appropriate edges. 

The one element of the wall (base) is placed in the domain       wzyx ,0,1,0,,0   . 

The rectangular right fin in dimensionless arguments occupies the domain

      wzbylx ,0,,0,,   . The rectangular left fin in dimensionless arguments 

occupies the domain       wzbylx ,0,,0,0,
1

 . We describe the temperature field by 

functions  , , ,V x y z t


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 in the wall and fins: 
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 (3.3) 

We must add initial conditions for the heat equations (1)–(3): 
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We assume heat fluxes from the flank surfaces (edges) and from the top and the 

bottom edges: 
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 (3.9) 

In the case of steady state problem all above mentioned functions are time-

independent. Three dimensional formulation of a steady state problem can be obtained 

in the similar way. Instead of (1) –(3) we have: 
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Initial conditions (4)-(6) are not needed. Conditions (7)-(9) are in the form: 
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Such type of boundary conditions (BC) (7) – (9) allows us to make the exact reducing 

of this three dimensional problem to the two dimensional problem by conservative 

averaging method [10]. Let us introduce following integral averaged values: 
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Realizing the integration of main equations (1) – (3) by usage of the BC (7) – (12) we 

obtain: 
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Here 
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We add to the main partial differential equations (15) – (17) needed BC as follows: 
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We assume them as ideal thermal contact between wall and fins - there is no contact 

resistance: 
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We have following BC for the right fin: 
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We have following BC for the left fin: 
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Finally, we introduce integral averaged values as (10) – (14) and add initial conditions 

for the heat equations (15) – (17): 
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In the similar way three dimensional steady state problem can be reduced to the two 

dimensional problem. Instead of (15)–(17) we have: 
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BC are still in the form (18)-(21), (26)-(31), conjugation conditions are in the form 

(22)-(25) for time-independent functions          yxyxyxVyxVyxV ,,,,,,,,,
010

 . 

Initial conditions (32)-(34) are not needed for steady state problem. 

This section represents solution for the 2D case of periodical system with constant 

dimensionless environmental temperatures  0 0
1

b
T     and 0 ( )

a
T    . We 

consider  yxU ,  is a temperature of the right fin,  yxU ,
0

 is a temperature of the wall 

and  yxU ,
1

 is a temperature of the left fin. Thus, the main equations are: 
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The BC (20), (21), (28), (31) are assumed to be homogeneous: 
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Instead of BC (18), (19), (26), (27), (29) and (30) we have: 
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The conjugations conditions on the line between the wall and the left fin are still 

standing in the form (24), (25) for the functions  yxU ,
0

 and  yxU ,
1

. The linear 

combination of the equations (24), (25) together with BC (38) allow us rewrite them 

as following BC on the left hand side of the wall: 
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In the similar way using the linear combination of the equations (22), (23) together 

with BC (39) we rewrite following BC on the right hand side of the wall: 
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 On the assumption that the functions  yF ,0
1

,  yF ,
0
 are given we can represent 

solution for the wall in very well known form by the Green function: 
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where Green function is: 

 
   

  
,

,,
,,,

1,

22

,0,0

0 


 




nm m

y

n

x

m

n

yGxG
yxG




  

 
   

,,
2

,0

,0,0

,0

m

mmx

m

x
xG




         ,coscos,

,0
  ynynyG

y

n
 

     ,sincos
0

,,0
xxx

m

m

mm





 

 

 
.1

222
2

2

0

22

2

0

2

22

0
2

,0 



















mm

m

mm

m


















 

Here 
m

 are the positive roots of the transcendental equation:
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Unfortunately the representation (48) is unusable as solution for the wall because of 

unknown functions  yF ,0
1

,  yF ,
0
   i.e. temperature in the fins. That is why we will pay 

attention to the solution for the fins now. In the same way we can rewrite the 

conjugations conditions (22), (23) in the form of BC on the left side of the right 

rectangular fin: 
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Then, similar as for the wall we can represent solution for the right fin in following 

form: 
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where Green function is: 
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Here 
ji

k,  are the positive roots of the transcendental equations: 
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Finally, we rewrite the conjugations conditions in the form of BC on the right side of 

the left rectangular fin: 
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Thus, solution for the left fin we can represent in following form: 
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Here 

ji
 , are the positive roots of the transcendental equations:
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Using notation (51) and representation (47) we can easy obtain the following 

equation:
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In the similar way we find equation for  yF ,0

1
 by using (45) and (54): 
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Next, we find equation for  yF ,  by using (50) and (48): 
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Finally, using (53) and (48) we get equation for  yF ,0
2

: 

         

1

2 1 2 0 2

0 0

0 , 0 , 0 , , 0 , , , , , .

b

F y F y d F y d             
         (3.58) 

Here     .,,,,,,
002

 yxG
x

yx 












  

When a system of Fredholm integral equations of the second kind (58) – (61) is 

solved, we obtain the temperatures fields in the wall (48), left fin (54) and right fin 

(51). 

 

4. System with Double Wall and Double Fins 

 

Since the given system can be divided into several symmetrical parts, we will describe 

the problem for only one of those L-shaped parts [14]. 

 
L-type domain 

We are going to represent the original L-type domain as a finite union of canonical 

subdomains with appropriate conjugation conditions along the lines connecting two 

neighbour domains. We may therefore suppose that this L-shaped sample is made up 

from five rectangles. 

 
Definition of geometrical parameters for the sample 

Let’s assume that ),( yxV
i

 denotes the temperature in the domain 
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C  with thermal 

conductivity
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k , and 
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The temperature fields are described by 
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Besides the equations, the following boundary conditions are imposed. We have a 

heat flux at x : 
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Along the lines of symmetry, 0y  and 
0

ly   symmetry boundary conditions must be 

applied: 
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where n  denotes the exterior normal to the boundary of the domains 
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other sides of the sample there is a heat exchange with the surrounding medium: 
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Assuming that there is no contact resistance between the connected parts, we also add 

conjugation conditions: 
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As the upper layer is quite thin, from now on we are going to assume that the 

temperature is uniform across the layer thickness. Hence from appropriate 

conjugation conditions we get these expressions: 
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Because of that, we only need to solve the problem defined for the basic layer. So, we 

have the Laplace equations 
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with boundary conditions at the six sides. As we know from Section 2, 

)(
0

0
yQ

x

V

x






 

       

 (4.6) 

0

0

0






y
y

V
, 0

0

0






 ly
y

V
,      

 (4.7) 

0

0






y
y

V
,       

 (4.8) 

But to get boundary conditions at 0x , lx  , and by  , we use appropriate 

conjugation conditions and expressions (1) – (3). For example, at 0x  we have 
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at lx  , by  . 

We also add conjugation conditions that state continuity of temperature and heat flux 

at the interface 0x : 
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Using conservative averaging method (see [10], etc.), we are going to construct an 

approximate solution for the given problem. Let’s use an exponential approximation 

in the y -direction for the 2D temperature field ),( yxV  in the fin. The general form 

of the function is given by 

),( yxV    0 1 2
( ) 1 ( ) 1 ( )

y y
f x e f x e f x

 
    ,               

(4.14) 

where 
1

 b . 

From symmetry condition (8) we find that )()(
12

xfxf  . So, (14) assumes the 

following form: 

   )(1cosh2)(),(
10

xfyxfyxV   .                 

(4.15) 

Defining the function )( xv  as integral average value 



b

dyyxVxv

0

),()(  ,                 

(4.16) 

and integrating the expression (15) with respect to y , we can find the function )(
1

xf : 

 1)1sinh(2

)()(
)(

0

1






xfxv
xf . 

Let’s substitute this in (14): 



 





 )(
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),( xv

y
yxV

  
0

s in h (1) co sh
( )

s in h (1) 1

y
f x




.              

(4.17) 

Applying the boundary condition (11), we have 

     
1 1

0 0 0
s inh (1) co sh (1) 1 ( ) s inh (1) s inh (1) co sh (1) ( ) 0 .v x f x           

And hence 

)()(
0

xvxf                  

(4.18) 

with 

 

 )1sinh()1cosh()1sinh(

1)1cosh()1sinh(

1

0

1

0






b

b




 . 

It follows immediately from (18) that 

)()(),( yxvyxV  ,                

(4.19) 

where 

  

 )1sinh()1cosh()1sinh(
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)(
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
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b

yb
y




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(4.20) 

Now the expression (14) (or (19)) contains only one unknown function – )( xv . In 

order to determine it, we use the definition (16) and from the partial differential 

equation (4) obtain an ordinary one for the unknown function: 

0

0

2

2











by

y
y

V

dx

vd
 ,  lx ,0 . 

The difference of the derivatives may be found via the boundary conditions (8) and 

(11), and (19): 

0)(
2

2

2

 xv
dx

vd
 ,                 

(4.21) 

where 

)(
1

0

2
b  . 

Applying the same operator (16) to (10) we get a boundary condition 

0)()(
1

0
 lvlv  .                 

(4.22) 

A solution to the problem (21), (22) is hence found to be 

 xx
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(4.23) 

where 

l
e








2

1

0

1

0




  

and 
1

c  is an unknown constant. 

Therefore 

  )(),(
1

yeecyxV
xx


 
 .                

(4.24) 



We act almost equally for the wall, and approximate the 2D temperature field 

),(
0

yxV  using exponential approximation in the x  – direction: 

0
( , )V x y     )(1)(1)(

210
ygeygeyg

dxdx


 , (4.25) 

with 
1

 d . 

Once again we use the properties of the function to solve for the unknown functions

)( yg
i

, 2,1,0i . 

We obtain average value function by the integral 






0

00
),()(



dxyxVdyv .                 

(4.26) 

Integrating (25) over the segment  0, , gives 

  )()(2)()(
2

1

100
ygeygeygyv


 .                

(4.27) 

The function ),(
0

yxV  also satisfies the boundary condition (6): 

)()()(
02

1

1
yQygeyeg 

 .                

(4.28) 

So, combining (27) and (28), we have 

 )()()(
2

1
)(

0001
yQyvygyg  .                

(4.29) 

Finally, we conclude from (28) and (29) that formula (25) becomes 
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2 2

0 0 0
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(4.30) 

Here we examine the part of the base that occupies the domain  0,x ,  
0

, lby  . 

Applying the boundary condition (9) to (30), 

1 2 2 2

0 0 0 0

1 1 1 1 1 1
( ) ( ) ( ) 0

2 2 2 2 2 2
g y d d e v y d d e Q y e e
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              

     

. 

We can rewrite this identity as 

00000
)()()( byQayvyg  ,                

(4.31) 

where 
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Substituting (31) into the representation (30), yields 
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(4.32) 



This shows that the function now depends only on one unknown - function )(
0

yv . Let’s integrate the 

main equation (5) in the x -direction 

0
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(4.33) 

The first addend can be found directly from the boundary condition (6), and (32). So 

(33) results in an ordinary differential equation 

)()(
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yQyv
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0
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(4.34) 

where 
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For simplicity reasons we henceforth assume the function )(
0

yQ  to be constant, that 

is
0 0

( )Q y Q . 

Integrating (72), we obtain a boundary condition: 

0)(
00
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(4.35) 

The solution of (34), (35) is 
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(4.36) 

with 
0

2

0

l
e


   

and 
2

c  as an unknown constant. 

To find the equation for the left part of the base, where  by ,0 , let us remind you 

that for 0x  the functions ),(
0

yxV , ),( yxV  satisfy the conjugation conditions (12), 

(13). So, from (13) and (24) it follows that 
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(4.37) 

If we now use (37) and the boundary condition (6), then equation (33) becomes 

 
012

0

2

)(1 dQydc
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Let us rewrite it as 
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(4.38) 

where 

 
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1

1
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

 b ,  
1

1

00
)1cosh()1sinh(  b . 

From (71) we get a boundary condition: 



0)0(
0
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(4.39) 

So, the solution of the problem (38), (39) is 
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(4.40) 

When finding temperature for the left part of the base, one should take into account, 

that the function )(
0

yg  is still unknown. We find that from the conjugation condition 

(12). Indeed, putting 0x  in (30) and (24), we get that 

  )(1)(
10

ycyg   .                 

(4.41) 

We have just found solution to the given problem. But we are still left with finding 

the unknown constants in the formulas (23), (36) and (40). To determine those, we 

will need several requirements to be fulfilled. First, the temperatures ),(
0

yxV , 

),( yxV  must coincide at the contact point byx  ,0  between the fin and the right 

part of the wall, so 

    0

1 2 0 0 0 0 02
1 ( )

b b
Q

c b c a e e a Q b
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(4.42) 

Second, the mean temperature values in the wall have continuity at by  : 
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(4.43) 

Third, we claim that the mean fluxes also coincide at by  : 

    2 0 1 2 1 0
s inh 1 .
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c e e c B b B b dQ b

 
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(4.44) 

All the constants can be found from the system (42), (43), and (44). So, the 

approximate analytical solution to the problem is uniquely determined. 

To get numerical results for temperature distribution in the sample, we used the 

following geometrical parameters: 

m 500 , ml 1 , mb 
2

105


 , ml 
1

0
101


 . 

But for the term physical properties we chose: 
124

1
10085.11


 KmWh  , 116

0
109


 KmWk  , 1

0
50


 mKQ  . 
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5. Steel quenching process 
 

Contrary to the traditional method the intensive quenching process uses environmentally 

friendly highly agitated water or low concentration of water/mineral salt solutions and very 

fast cooling rates are applied. We propose to use hyperbolic heat equation for more realistic 

description of the intensive quenching process (especially for process initial stage). Here we 

consider few other models and construct solutions for direct and inverse problems of 

hyperbolic heat conduction equation [15].  

The non-dimensional temperature field fulfils hyperbolic heat equation (telegraph equation): 
2 2 2 2

2 2

2 2 2 2
, (0 , ) , (0 , ) , (0 , ) , (0 , ] , .

r

V V V V V k
a x l y b z w t T a
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(5.1) 

Here c  is the specific heat capacity, k - the heat conduction coefficient,  - the density, 
r

 - 

the relaxation time. It is natural assumption that planes 0 , 0 , 0x y z    are symmetry 

surfaces of the sample:  

0 00
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x zy

V V V

x y z
 

  
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 (5.2) 

On the all other sides of steel part we have heat exchange with environment. Although the 

method proposed here is applicable for non-homogeneous environment temperature, for 

simplicity we consider models of constant environment temperature
0

0  . This restriction 

gives following homogeneous third type boundary conditions on the all three outer sides. The 

initial conditions are assumed in form: 
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 (5.3) 
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 (5.4) 

From the practical point of view the condition (4) is unrealistic. The initial heat flux must be 

determined theoretically. As additional condition we assume that the temperature distribution 

and the heat fluxes distribution at the end of process are given (known): 
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 (5.5) 
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 (5.6) 

As the first step we use well known substitution: ( , , , ) ex p ( , , , ) .
2

r

t
V x y z t U x y z t
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Then the differential equation (1) transforms into differential equation without first time 

derivative: 
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 (5.7) 

The initial and boundary conditions take the form: 
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 (5.8) 
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 (5.12) 

Additional conditions transform as follow: 
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We will start with formulation of the mathematical model for thin in ,y z  directions of steel 

part (one-dimensional model): , .w l b l  Then in accordance with conservative 

averaging method we introduce following integral averaged value: 
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 (5.15) 

Assuming the simplest approximation by constant in the ,y z  directions, we obtain 1-D 

differential equation with the source term: 
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 (5.16) 

Initial conditions (13), (14) for the differential equation (16) are as follow: 
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The boundary conditions remain in the same form. Solution of this one-dimensional  

direct problem is well known: 
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 (5.17) 

The Green function has representation: 
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Here the natural number m in the both sums is given by inequalities: 
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The eigenvalues
i

  are roots of the transcendental equation: tan ( ) .l    

As it was told earlier, from experimental point of view second initial condition is unrealizable 

and the
0

( )v x  must be calculated theoretically. The differentiation of solution gives:  
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 (5.18) 

There is an interesting situation, if both additional conditions are known. In this case we 

introduce new time argument by formula 

.t T t                        

 (5.19) 

The main differential equation remains its form and the boundary conditions remain the same. 

Both additional conditions transform to initial conditions for the equation: 
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 (5.20) 

The solution of direct problem (29), (22) and (30) is similar with the solution. For the heat 

flux we have a nice explicit representation for the initial heat flux: 
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By applying conservative averaging method to the problem we obtain relatively the integral 

average temperature
0
( )u t following boundary problem for ordinary differential equation: 

2

00 0

0 0 0 02
( ) ( ), , (0 ) , ( ) .

r H T

H H

d u d u h h
u t f t c c H u u u T u

d t c cd t
                    

 (5.22) 

We are interested to determine 

0

0

(0 )d u
v

d t
 .      

 (5.23) 

Here
1

1 4· ·
2

r

r H

h

c
 


  . (44) 

Consequently, we have finally obtained the solution of this problem as: 
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As the last step we use the additional information – condition (20), i.e. the known value at the 

end of the process. This information allows us to express unknown second initial condition in 

closed and simple form:  
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We can increase the order of the approximation for the solution of the original problem by the 

representation with polynomial of second degree and exponential approximation. The 

integration over interval [0 , ]x H  of the main equation practically gives the same ordinary 

differential equation. The only difference is in the same coefficient at two terms. The 

additional conditions remain the same. It means that we can use obtained above formulae 

replacing the parameters ,   by following expressions:  
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We have obtained solution of well posed problem in closed form. This solution can be used as 

initial approximation for integrated over [0 , ]x H  equation. 

Conservative averaging method can be applied to problems with non linear BC. 

Condition for nucleate boiling (
1

[3; 3 ]
3

m  ): 

[ ( )] 0 , , [0 , ]
m m

B

U
k U t x R t T

x



     


. We solved several problems and 

obtained numerical results using Maple and COMSOL Multiphysics. Modeling is 

done for a silver ball, r=0.02m, temperature at t=0 is 600°C, at t=T 0°C.  
Dependence on  value 

 

 
 

 

 

If we compare solutions of classic – parabolic – and hyperbolic heat conduction problems, 

using nonlinear boundary condition case, we obtain graphic: 

 

. 

 
We examined temperature on the radius. As you can see, the temperature on radius is not 

monotony. It means that the form of boundary condition on the surface can vary: 

r
  

0
v  

0.2 -4499.270429 

0.5 -1799.270299 

1.5 -600.2998684 



 
Temperature distribution on radius 

 
It is very clear that at the beginning of the process hyperbolic term is extremely important but 

later process is described by classic heat equation. It is possible to define precise points were 

temperature is computed. 

 
Temperature changes at r=0m and r=0.01m 
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