

Janis Spigulis, Ilze Oshina, Peteris Potapovs

Biophotonics Laboratory Institute of Atomic Physics and Spectroscopy University of Latvia, Riga

COST 16101 3rd conference, Catania 18/09/2019

The main concept: improved MSI

Conventional: Spectral **band** images

Sequential (t>>0)

 $n = 3 \rightarrow n > 3$

Why? Advantages:

- Increased (ultimate) spectral selectivity
- Improved imaging quality (avoided motion artefacts single snapshot)
- Simpler/faster image processing (numbers instead of integrals over wavelength bands)

Triple spectral line imaging

3 monochromatic spectral images from a single-snapshot RGB image data can be extracted if object is <u>illuminated simultaneously at 3 laser</u> wavelengths, and the RGB-band sensitivities of the image sensor are known \rightarrow corrected R-, G- and B-band images*

*) WO 2013135311 (A1), 2012. Method and device for imaging of spectral reflectance at several wavelength bands.

How about uniformity of laser illumination? Flat ring-shaped diffusing reflector

Proof of concept: color pigment differences in counterfeits

Preliminary: increased sensitivity by ratios of spectral line images involving 448 nm

Mean pixel values over the selected RoI are calculated/divided

New data: **500 EUR**

448 nm

532 nm

659 nm

Elements (RoI's) for numerical research of the 500 EUR banknotes

Elements for numerical research on the 500 EUR banknote

Ratio between elements D1 and D2

 $\lambda R - 659$ nm illumination $\lambda G - 532$ nm illumination $\lambda B - 448$ nm illumination

Ratio between elements E1 and E2

Ratio between elements E1 and E2

1

5

4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0,0 λR λG $\lambda \mathbf{B}$ $\lambda G / \lambda R$ $\lambda G / \lambda B$ $\lambda B / \lambda R$ $\lambda R - \lambda G$ λG-λB $\lambda B - \lambda R$ Authentic Counterfeit 1 Counterfeit 2

S^fJ) **SPECE EXE EXT EXP 301 SPEC SOUCEURO**

Ratio between elements G1 and G2

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 $\lambda G/\lambda R \quad \lambda G/\lambda B$ $\lambda B/\lambda R$ $\lambda R-\lambda G$ $\lambda G-\lambda B$ λR λG λΒ $\lambda B - \lambda R$ Authentic Counterfeit 1 Counterfeit 2

Ratio between elements G1 and G2

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 $\lambda G/\lambda R \quad \lambda G/\lambda B$ $\lambda B/\lambda R$ $\lambda R-\lambda G$ $\lambda G-\lambda B$ λR λG λΒ $\lambda B - \lambda R$ Counterfeit 1 Authentic Counterfeit 2

500 P11001803698)/,7 500 500 500 500 500

500 P11001803698)/j? 500 500 500 500 500 500

Ratio between elements H1 and H2

Principal component analysis

(first component)

RRS: triple spectral line approach for document counterfeit detection

Spectral line images and the respective normalized printed letter values for the three pages (standard deviations)

Page No.	RGB image with three lasers	659 nm	Mean printed text values	532 nm	Mean printed text values	448 nm	Mean printed text values
1	avimentos para , sito na rua Fle Jesia de Santo tricial sob o art	avimentos para , sito na rua Flo Jesia de Santo tricial sob o art	0.029 ± 0.015	avimentos para0.8, sito na rua Flo0.6Jesia de Santo0.4tricial sob o art0.200	0.078 ± 0.035	avimentos para , sito na rua Fk Jesia de Santo tricial sob o art	0.051 ± 0.004
2	conforme e canalizações iinização, toma a custa as nece	conforme 0.8 e canalizaçõe: 0.4 iinização, toma 0.2 a custa as nec	0.042 ± 0.017	conforme0.8e canalizaçõe:0.6inização, toma0.4a custa as neci0.200	0.098 ± 0.036	conforme d ¹ e canalizaçõe: inização, toma a custa as nece	0.063 ± 0.004
3	o outorgante c consumo de a a eléctrica que	o outorgante c consumo de ^{0.4} a eléctrica que ^{0.2}	0.028 ± 0.015	o outorgante c consumo de a a eléctrica que 0	0.073 ± 0.033	o outorgante c consumo de ^{0.5} a eléctrica que ₀	0.051 ± 0.004

First signature

Page No.	RGB image	659 nm / 532 nm	Mean written text values	532 nm	Mean written text values
1		3 2.5 2 1.5 1 0.5 0	0.315 ± 0.059	0.15	0.050 ± 0.008
2	2	3 2.5 2 1.5 1 0.5 0	0.300 ± 0.060	0.15 0.1 0.05 0	0.051 ± 0.010
3	Manun	3 2 1 0	0.315 ± 0.067	Manun 0.1 0.05 0	0.041 ± 0.007

Second signature

Page No.	RGB image	448 nm / 659 nm	Mean written text values	448 nm	Mean written text values, ·10 ⁻²
1	FF		1.245 ± 0.190	0.5 0.5	0.159 ± 0.045
2	Sf		1.271 ± 0.205	0.5	0.155 ± 0.044
3	forn		1.245 ± 0.173	$\int_{0.5}^{1}$	0.153 ± 0.047

Third signature

Page No.	RGB image	448 nm / 532 nm	Mean written text values	659 nm	Mean written text values, ·10 ⁻²
1			0.911 ± 0.166	0.6 0.4 0.2 0	0.090 ± 0.045
2	P	2 1 0	1.055 ± 0.181	0.6 0.4 0.2 0	0.084 ± 0.035
3	Pedro	\mathcal{R}	0.839 ± 0.166	Padro 0.5 0	0.099 ± 0.046

Current project: 4 laser line illumination by a side-emitting optical fiber ring

LV 11644 B, 1995. Side-emitting optical fiber (D. Pfafrods, M. Stafeckis, J. Spigulis, D. Boucher); LV patent application # P-19-45, 21.08.2019.

The new (4+1) wavelength prototype: design concept

Step 1 - 450/523/638/850 nm illumination for snapshot mapping of 4 skin chromophores (HbO, Hb, Mel, Blr) and calculation of the MM criterion;

Step 2 – 4 x 405nm LD excitation for skin fluorescence imaging (MM – SK differentiation)

Summary

- Advanced multi-spectral imaging technique (band → line, sequential → snapshot) developed and tested
- Application: color pigment analysis
- Triple spectral line imaging approach works for paper counterfeit detection
- Counterfeit 50 EUR banknote studies: most sensitive are the blue line (448nm) images and the ratios of red (659nm) and blue images
- Counterfeit 500 EUR banknote studies: most sensitive are the differences between the mono-spectral images
- Potential for document forgery detection demonstrated
- Further improvements (n=3 \rightarrow n=4) in progress

Acknowedgements

This study was supported by the Latvian Council of Science, grant # LZP-2018/2-0006 «Advanced spectral imaging technology for skin diagnostics»

Latvian Council of Science

24 – 26 August 2020 Riga, Latvia

The main topics:

- Biomedical tissue imaging
- Optical clinical diagnostics and monitoring
- Skin optics and spectroscopy

Thank You!

- janispi@latnet.lv
- <u>http://home.lu.lv/~spigulis</u>

